File: symint.py

package info (click to toggle)
sasmodels 1.0.12-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 16,828 kB
  • sloc: python: 32,065; ansic: 8,036; makefile: 153; sh: 50
file content (165 lines) | stat: -rw-r--r-- 4,929 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
Explore integration of rotationally symmetric shapes
"""


import os
import sys

sys.path.insert(0, os.path.dirname(os.path.dirname(__file__)))

import numpy as np
import pylab
from numpy import cos, degrees, pi, sin, sqrt
from numpy.polynomial.legendre import leggauss
from scipy.integrate import romb, romberg, simps

from sasmodels.special import sas_2J1x_x, sas_3j1x_x, sas_sinx_x

SLD = 3.0
SLD_SOLVENT = 6
CONTRAST = SLD - SLD_SOLVENT

def make_cylinder(radius, length):
    def cylinder(qab, qc):
        return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length)
    cylinder.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
    volume = pi*radius**2*length
    norm = CONTRAST**2*volume/10000
    return norm, cylinder

def make_long_cylinder(radius, length):
    def long_cylinder(q):
        return norm/q * sas_2J1x_x(q*radius)**2
    long_cylinder.__doc__ = "long cylinder radius=%g, length=%g"%(radius, length)
    volume = pi*radius**2*length
    norm = CONTRAST**2*volume/10000*pi/length
    return long_cylinder

def make_sphere(radius):
    def sphere(qab, qc):
        q = sqrt(qab**2 + qc**2)
        return sas_3j1x_x(q*radius)
    sphere.__doc__ = "sphere radius=%g"%(radius,)
    volume = 4*pi*radius**3/3
    norm = CONTRAST**2*volume/10000
    return norm, sphere

THETA_LOW, THETA_HIGH = 0, pi/2
SCALE = 1


def kernel_1d(q, theta):
    """
    S(q) kernel for paracrystal forms.
    """
    qab = q*sin(theta)
    qc = q*cos(theta)
    return NORM*KERNEL(qab, qc)**2

def gauss_quad_1d(q, n=150):
    """
    Compute the integral using gaussian quadrature for n = 20, 76 or 150.
    """
    z, w = leggauss(n)
    theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
    sin_theta = abs(sin(theta))
    Zq = kernel_1d(q=q, theta=theta)
    return np.sum(Zq*w*sin_theta)*(THETA_HIGH-THETA_LOW)/2

def gridded_1d(q, n=300):
    """
    Compute the integral on a regular grid using rectangular, trapezoidal,
    simpsons, and romberg integration.  Romberg integration requires that
    the grid be of size n = 2**k + 1.
    """
    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
    Zq = kernel_1d(q=q, theta=theta)
    Zq *= abs(sin(theta))
    dx = theta[1]-theta[0]
    print("rect-%d"%n, np.sum(Zq)*dx*SCALE)
    print("trapz-%d"%n, np.trapz(Zq, dx=dx)*SCALE)
    print("simpson-%d"%n, simps(Zq, dx=dx)*SCALE)
    print("romb-%d"%n, romb(Zq, dx=dx)*SCALE)

def scipy_romberg_1d(q):
    """
    Compute the integral using romberg integration.  This function does not
    complete in a reasonable time.  No idea if it is accurate.
    """
    evals = [0]
    def outer(theta):
        evals[0] += 1
        return kernel_1d(q, theta=theta)*abs(sin(theta))
    result = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)*SCALE
    print("scipy romberg", evals[0], result)

def plot_1d(q, n=300):
    """
    Plot the function that needs to be integrated in order to compute
    the I(q) at a particular q.  *n* is the number of points in the grid.
    """
    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
    Zq = kernel_1d(q=q, theta=theta)
    Zq *= abs(sin(theta))
    pylab.semilogy(degrees(theta), np.fmax(Zq, 1.e-6), label="Q=%g"%q)
    pylab.title("%s I(q, theta) sin(theta)" % (KERNEL.__doc__,))
    pylab.xlabel("theta (degrees)")
    pylab.ylabel("Iq 1/cm")

def Iq_trapz(q, n):
    theta = np.linspace(THETA_LOW, THETA_HIGH, n)
    Zq = kernel_1d(q=q, theta=theta)
    Zq *= abs(sin(theta))
    dx = theta[1]-theta[0]
    return np.trapz(Zq, dx=dx)*SCALE

def plot_Iq(q, n, form="trapz"):
    if form == "trapz":
        Iq = np.array([Iq_trapz(qk, n) for qk in q])
    elif form == "gauss":
        Iq = np.array([gauss_quad_1d(qk, n) for qk in q])
    pylab.loglog(q, Iq, label="%s, n=%d"%(form, n))
    pylab.xlabel("q (1/A)")
    pylab.ylabel("Iq (1/cm)")
    pylab.title(KERNEL.__doc__ + " I(q) circular average")
    return Iq

radius = 10.
length = 1e5
NORM, KERNEL = make_cylinder(radius=radius, length=length)
long_cyl = make_long_cylinder(radius=radius, length=length)
#NORM, KERNEL = make_sphere(radius=50.)


if __name__ == "__main__":
    Q = 0.386
    for n in (20, 76, 150, 300, 1000): #, 10000, 30000):
        print("gauss-%d"%n, gauss_quad_1d(Q, n=n))
    for k in (8, 10, 13, 16, 19):
        gridded_1d(Q, n=2**k+1)
    #print("inf cyl", 0, long_cyl(Q))
    #scipy_romberg(Q)

    plot_1d(0.386, n=2000)
    plot_1d(0.5, n=2000)
    plot_1d(0.8, n=2000)
    pylab.legend()
    pylab.figure()

    q = np.logspace(-3, 0, 400)
    I1 = long_cyl(q)
    I2 = plot_Iq(q, n=2**19+1, form="trapz")
    #plot_Iq(q, n=2**16+1, form="trapz")
    #plot_Iq(q, n=2**10+1, form="trapz")
    plot_Iq(q, n=1024, form="gauss")
    #plot_Iq(q, n=300, form="gauss")
    #plot_Iq(q, n=150, form="gauss")
    #plot_Iq(q, n=76, form="gauss")
    pylab.loglog(q, long_cyl(q), label="limit")
    pylab.legend()

    pylab.figure()
    pylab.semilogx(q, (I2 - I1)/I1)

    pylab.show()