1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
"""
Explore integration of rotationally symmetric shapes
"""
import os
import sys
sys.path.insert(0, os.path.dirname(os.path.dirname(__file__)))
import numpy as np
import pylab
from numpy import cos, degrees, pi, sin, sqrt
from numpy.polynomial.legendre import leggauss
from scipy.integrate import romb, romberg, simps
from sasmodels.special import sas_2J1x_x, sas_3j1x_x, sas_sinx_x
SLD = 3.0
SLD_SOLVENT = 6
CONTRAST = SLD - SLD_SOLVENT
def make_cylinder(radius, length):
def cylinder(qab, qc):
return sas_2J1x_x(qab*radius) * sas_sinx_x(qc*0.5*length)
cylinder.__doc__ = "cylinder radius=%g, length=%g"%(radius, length)
volume = pi*radius**2*length
norm = CONTRAST**2*volume/10000
return norm, cylinder
def make_long_cylinder(radius, length):
def long_cylinder(q):
return norm/q * sas_2J1x_x(q*radius)**2
long_cylinder.__doc__ = "long cylinder radius=%g, length=%g"%(radius, length)
volume = pi*radius**2*length
norm = CONTRAST**2*volume/10000*pi/length
return long_cylinder
def make_sphere(radius):
def sphere(qab, qc):
q = sqrt(qab**2 + qc**2)
return sas_3j1x_x(q*radius)
sphere.__doc__ = "sphere radius=%g"%(radius,)
volume = 4*pi*radius**3/3
norm = CONTRAST**2*volume/10000
return norm, sphere
THETA_LOW, THETA_HIGH = 0, pi/2
SCALE = 1
def kernel_1d(q, theta):
"""
S(q) kernel for paracrystal forms.
"""
qab = q*sin(theta)
qc = q*cos(theta)
return NORM*KERNEL(qab, qc)**2
def gauss_quad_1d(q, n=150):
"""
Compute the integral using gaussian quadrature for n = 20, 76 or 150.
"""
z, w = leggauss(n)
theta = (THETA_HIGH-THETA_LOW)*(z + 1)/2 + THETA_LOW
sin_theta = abs(sin(theta))
Zq = kernel_1d(q=q, theta=theta)
return np.sum(Zq*w*sin_theta)*(THETA_HIGH-THETA_LOW)/2
def gridded_1d(q, n=300):
"""
Compute the integral on a regular grid using rectangular, trapezoidal,
simpsons, and romberg integration. Romberg integration requires that
the grid be of size n = 2**k + 1.
"""
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
Zq = kernel_1d(q=q, theta=theta)
Zq *= abs(sin(theta))
dx = theta[1]-theta[0]
print("rect-%d"%n, np.sum(Zq)*dx*SCALE)
print("trapz-%d"%n, np.trapz(Zq, dx=dx)*SCALE)
print("simpson-%d"%n, simps(Zq, dx=dx)*SCALE)
print("romb-%d"%n, romb(Zq, dx=dx)*SCALE)
def scipy_romberg_1d(q):
"""
Compute the integral using romberg integration. This function does not
complete in a reasonable time. No idea if it is accurate.
"""
evals = [0]
def outer(theta):
evals[0] += 1
return kernel_1d(q, theta=theta)*abs(sin(theta))
result = romberg(outer, THETA_LOW, THETA_HIGH, divmax=100)*SCALE
print("scipy romberg", evals[0], result)
def plot_1d(q, n=300):
"""
Plot the function that needs to be integrated in order to compute
the I(q) at a particular q. *n* is the number of points in the grid.
"""
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
Zq = kernel_1d(q=q, theta=theta)
Zq *= abs(sin(theta))
pylab.semilogy(degrees(theta), np.fmax(Zq, 1.e-6), label="Q=%g"%q)
pylab.title("%s I(q, theta) sin(theta)" % (KERNEL.__doc__,))
pylab.xlabel("theta (degrees)")
pylab.ylabel("Iq 1/cm")
def Iq_trapz(q, n):
theta = np.linspace(THETA_LOW, THETA_HIGH, n)
Zq = kernel_1d(q=q, theta=theta)
Zq *= abs(sin(theta))
dx = theta[1]-theta[0]
return np.trapz(Zq, dx=dx)*SCALE
def plot_Iq(q, n, form="trapz"):
if form == "trapz":
Iq = np.array([Iq_trapz(qk, n) for qk in q])
elif form == "gauss":
Iq = np.array([gauss_quad_1d(qk, n) for qk in q])
pylab.loglog(q, Iq, label="%s, n=%d"%(form, n))
pylab.xlabel("q (1/A)")
pylab.ylabel("Iq (1/cm)")
pylab.title(KERNEL.__doc__ + " I(q) circular average")
return Iq
radius = 10.
length = 1e5
NORM, KERNEL = make_cylinder(radius=radius, length=length)
long_cyl = make_long_cylinder(radius=radius, length=length)
#NORM, KERNEL = make_sphere(radius=50.)
if __name__ == "__main__":
Q = 0.386
for n in (20, 76, 150, 300, 1000): #, 10000, 30000):
print("gauss-%d"%n, gauss_quad_1d(Q, n=n))
for k in (8, 10, 13, 16, 19):
gridded_1d(Q, n=2**k+1)
#print("inf cyl", 0, long_cyl(Q))
#scipy_romberg(Q)
plot_1d(0.386, n=2000)
plot_1d(0.5, n=2000)
plot_1d(0.8, n=2000)
pylab.legend()
pylab.figure()
q = np.logspace(-3, 0, 400)
I1 = long_cyl(q)
I2 = plot_Iq(q, n=2**19+1, form="trapz")
#plot_Iq(q, n=2**16+1, form="trapz")
#plot_Iq(q, n=2**10+1, form="trapz")
plot_Iq(q, n=1024, form="gauss")
#plot_Iq(q, n=300, form="gauss")
#plot_Iq(q, n=150, form="gauss")
#plot_Iq(q, n=76, form="gauss")
pylab.loglog(q, long_cyl(q), label="limit")
pylab.legend()
pylab.figure()
pylab.semilogx(q, (I2 - I1)/I1)
pylab.show()
|