1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
"""
Generate ReST docs with figures for each model.
usage: python genmodels.py path/to/model1.py ...
Output is placed in the directory model, with *model1.py* producing
*model/model1.rst* and *model/img/model1.png*.
Set the environment variable SASMODELS_BUILD_CACHE to the path for the
build cache. That way the figure will only be regenerated if the kernel
code has changed. This is useful on a build server where the environment
is created from scratch each time. Be sure to clear the cache from time
to time so it doesn't get too large. Also, the cache will need to be
cleared if the image generation is updated, either because matplotib
is upgraded or because this file changes. To accomodate both these
conditions set the path as the following in your build script::
SASMODELS_BUILD_CACHE=/tmp/sasbuild_$(shasum genmodel.py | cut -f 1 -d" ")
Putting the cache in /tmp allows temp-reaper to clean it up automatically.
Putting the sha1 hash of this file in the cache directory name means that
a new cache will be created whenever the text of this file has changed,
even if it is downloaded from a different branch of the repo.
The release build should not use any caching.
This program uses multiprocessing to build the jobs in parallel. Use
the following::
SASMODELS_BUILD_CPUS=0 # one per processor
SASMODELS_BUILD_CPUS=1 # don't use multiprocessing
SASMODELS_BUILD_CPUS=n # use n processes
Note that sasmodels with OpenCL is very good at using all the processors
when generating the model plot, so you should only use a small amount
of parallelism (maybe 2-4 processes), allowing matplotlib to run in
parallel. More parallelism won't help, and may overwhelm the GPU if you
have one.
"""
from __future__ import print_function
import sys
import os
from os.path import basename, dirname, realpath, join as joinpath, exists
import math
import re
import shutil
import argparse
import subprocess
# CRUFT: python 2.7 backport of makedirs(path, exist_ok=False)
if sys.version_info[0] >= 3:
from os import makedirs
else:
def makedirs(path, exist_ok=False):
try:
os.makedirs(path)
except Exception:
if not exist_ok or not exists(path):
raise
import numpy as np
# TODO: Remove this line when genmodel is moved to the sasmodels directory.
sys.path.insert(0, realpath(joinpath(dirname(__file__), '..')))
from sasmodels import generate, core
from sasmodels.direct_model import DirectModel, call_profile
from sasmodels.data import empty_data1D, empty_data2D
try:
from typing import Dict, Any
#from matplotlib.axes import Axes
from sasmodels.kernel import KernelModel
from sasmodels.modelinfo import ModelInfo
except ImportError:
pass
# Destination directory for model docs
#ROOT = dirname(dirname(realpath(__file__)))
#TARGET_DIR = joinpath(ROOT, "doc", "model")
TARGET_DIR = "model" # relative to current path
def plot_1d(model, opts, ax):
# type: (KernelModel, Dict[str, Any], Axes) -> None
"""
Create a 1-D image.
"""
q_min, q_max, nq = opts['q_min'], opts['q_max'], opts['nq']
q_min = math.log10(q_min)
q_max = math.log10(q_max)
q = np.logspace(q_min, q_max, nq)
data = empty_data1D(q)
calculator = DirectModel(data, model)
Iq1D = calculator()
ax.plot(q, Iq1D, color='blue', lw=2, label=model.info.name)
ax.set_xlabel(r'$Q \/(\AA^{-1})$')
ax.set_ylabel(r'$I(Q) \/(\mathrm{cm}^{-1})$')
ax.set_xscale(opts['xscale'])
ax.set_yscale(opts['yscale'])
#ax.legend(loc='best')
def plot_2d(model, opts, ax):
# type: (KernelModel, Dict[str, Any], Axes) -> None
"""
Create a 2-D image.
"""
qx_max, nq2d = opts['qx_max'], opts['nq2d']
q = np.linspace(-qx_max, qx_max, nq2d) # type: np.ndarray
data2d = empty_data2D(q, resolution=0.0)
calculator = DirectModel(data2d, model)
Iq2D = calculator() #background=0)
Iq2D = Iq2D.reshape(nq2d, nq2d)
if opts['zscale'] == 'log':
Iq2D = np.log(np.clip(Iq2D, opts['vmin'], np.inf))
ax.imshow(Iq2D, interpolation='nearest', aspect=1, origin='lower',
extent=[-qx_max, qx_max, -qx_max, qx_max], cmap=opts['colormap'])
ax.set_xlabel(r'$Q_x \/(\AA^{-1})$')
ax.set_ylabel(r'$Q_y \/(\AA^{-1})$')
def plot_profile_inset(model_info, ax):
# type: (ModelInfo, Axes) -> None
"""
Plot 1D radial profile as inset plot.
"""
import matplotlib.pyplot as plt
p = ax.get_position()
width, height = 0.4*(p.x1-p.x0), 0.4*(p.y1-p.y0)
left, bottom = p.x1-width, p.y1-height
inset = plt.gcf().add_axes([left, bottom, width, height])
x, y, labels = call_profile(model_info)
inset.plot(x, y, '-')
inset.locator_params(nbins=4)
#inset.set_xlabel(labels[0])
#inset.set_ylabel(labels[1])
inset.text(0.99, 0.99, "profile",
horizontalalignment="right",
verticalalignment="top",
transform=inset.transAxes)
def figfile(model_info):
# type: (ModelInfo) -> str
return model_info.id + '_autogenfig.png'
def make_figure(model_info, opts):
# type: (ModelInfo, Dict[str, Any]) -> None
"""
Generate the figure file to include in the docs.
"""
import matplotlib.pyplot as plt
print("Build model")
model = core.build_model(model_info)
print("Set up figure")
fig_height = 3.0 # in
fig_left = 0.6 # in
fig_right = 0.5 # in
fig_top = 0.6*0.25 # in
fig_bottom = 0.6*0.75
if model_info.parameters.has_2d:
plot_height = fig_height - (fig_top+fig_bottom)
plot_width = plot_height
fig_width = 2*(plot_width + fig_left + fig_right)
aspect = (fig_width, fig_height)
ratio = aspect[0]/aspect[1]
ax_left = fig_left/fig_width
ax_bottom = fig_bottom/fig_height
ax_height = plot_height/fig_height
ax_width = ax_height/ratio # square axes
fig = plt.figure(figsize=aspect)
ax2d = fig.add_axes([0.5+ax_left, ax_bottom, ax_width, ax_height])
print("2D plot")
plot_2d(model, opts, ax2d)
ax1d = fig.add_axes([ax_left, ax_bottom, ax_width, ax_height])
print("1D plot")
plot_1d(model, opts, ax1d)
#ax.set_aspect('square')
else:
plot_height = fig_height - (fig_top+fig_bottom)
plot_width = (1+np.sqrt(5))/2*fig_height
fig_width = plot_width + fig_left + fig_right
ax_left = fig_left/fig_width
ax_bottom = fig_bottom/fig_height
ax_width = plot_width/fig_width
ax_height = plot_height/fig_height
aspect = (fig_width, fig_height)
fig = plt.figure(figsize=aspect)
ax1d = fig.add_axes([ax_left, ax_bottom, ax_width, ax_height])
print("1D plot")
plot_1d(model, opts, ax1d)
if model_info.profile:
print("Profile inset")
plot_profile_inset(model_info, ax1d)
print("Save")
# Save image in model/img
makedirs(joinpath(TARGET_DIR, 'img'), exist_ok=True)
path = joinpath(TARGET_DIR, 'img', figfile(model_info))
plt.savefig(path, bbox_inches='tight')
plt.close(fig)
#print("figure saved in",path)
def newer(src, dst):
return not exists(dst) or os.path.getmtime(src) > os.path.getmtime(dst)
def copy_if_newer(src, dst):
# type: (str) -> str
"""
Copy from *src* to *dst* if *src* is newer or *dst* doesn't exist.
"""
if newer(src, dst):
makedirs(dirname(dst), exist_ok=True)
shutil.copy2(src, dst)
def link_sources(model_info):
# type: (ModelInfo) -> str
"""
Add link to model sources from the doc tree.
"""
# List source files in order of dependency.
sources = generate.model_sources(model_info) if model_info.source else []
sources.append(model_info.basefile)
# Copy files to src dir under models directory. Need to do this
# because sphinx can't link to an absolute path.
dst = joinpath(TARGET_DIR, "src")
for path in sources:
copy_if_newer(path, joinpath(dst, basename(path)))
# Link to local copy of the files in reverse order of dependency
targets = [basename(path) for path in sources]
downloads = [":download:`%s <src/%s>`"%(filename, filename)
for filename in reversed(targets)]
# Could do syntax highlighting on the model files by creating a rst file
# beside each source file named containing source file with
#
# src/path.rst:
#
# .. {{ path.replace('/','_') }}:
#
# .. literalinclude:: {{ src/path }}
# :language: {{ "python" if path.endswith('.py') else "c" }}
# :linenos:
#
# and link to it using
#
# colors = [":ref:`%s`"%(path.replace('/','_')) for path in sources]
#
# Probably need to dump all the rst files into an index.rst to build them.
# Link to github repo (either the tagged sasmodels version or master)
#url = "https://github.com/SasView/sasmodels/blob/v%s"%sasmodels.__version__
#url = "https://github.com/SasView/sasmodels/blob/master"%sasmodels.__version__
#links = ["`%s <%s/sasmodels/models/%s>`_"%(path, url, path) for path in sources]
sep = "\n$\\ \\star\\ $ " # bullet
body = "\n**Source**\n"
#body += "\n" + sep.join(links) + "\n\n"
body += "\n" + sep.join(downloads) + "\n\n"
return body
def gen_docs(model_info, outfile):
# type: (ModelInfo, str) -> None
"""
Generate the doc string with the figure inserted before the references.
"""
# Load the doc string from the module definition file and store it in rst
docstr = generate.make_doc(model_info)
# Auto caption for figure
captionstr = '\n'
captionstr += '.. figure:: img/' + figfile(model_info) + '\n'
captionstr += '\n'
if model_info.parameters.has_2d:
captionstr += ' 1D and 2D plots corresponding to the default parameters of the model.\n'
else:
captionstr += ' 1D plot corresponding to the default parameters of the model.\n'
captionstr += '\n'
# Add figure reference and caption to documentation (at end, before References)
pattern = r'\*\*REFERENCE'
match = re.search(pattern, docstr.upper())
sources = link_sources(model_info)
insertion = captionstr + sources
if match:
docstr1 = docstr[:match.start()]
docstr2 = docstr[match.start():]
docstr = docstr1 + insertion + docstr2
else:
print('------------------------------------------------------------------')
print('References NOT FOUND for model: ', model_info.id)
print('------------------------------------------------------------------')
docstr += insertion
with open(outfile, 'w', encoding='utf-8') as fid:
fid.write(docstr)
def make_figure_cached(model_info, opts):
"""
Cache sasmodels figures between independent builds.
To enable caching, set *SASMODELS_BUILD_CACHE* in the environment.
A (mostly) unique key will be created based on model source and opts. If
the png file matching that key exists in the cache it will be copied into
the documentation tree, otherwise a new png file will be created and copied
into the cache.
Be sure to clear the cache from time to time. Even though the model
source
"""
import hashlib
# check if we are caching
cache_dir = os.environ.get('SASMODELS_BUILD_CACHE', None)
if cache_dir is None:
print("Nothing cashed, creating...")
make_figure(model_info, opts)
print("Made a figure")
return
# TODO: changing default parameters won't trigger a rebuild.
# build cache identifier
if callable(model_info.Iq):
with open(model_info.filename) as fid:
source = fid.read()
else:
source = generate.make_source(model_info)["dll"]
pars = str(sorted(model_info.parameters.defaults.items()))
code = source + pars + str(sorted(opts.items()))
hash_id = hashlib.sha1(code.encode('utf-8')).hexdigest()
# copy from cache or generate and copy to cache
png_name = figfile(model_info)
target_fig = joinpath(TARGET_DIR, 'img', png_name)
cache_fig = joinpath(cache_dir, ".".join((png_name, hash_id, "png")))
if exists(cache_fig):
copy_file(cache_fig, target_fig)
else:
#print(f"==>regenerating png {model_info.id}")
make_figure(model_info, opts)
copy_file(target_fig, cache_fig)
def copy_file(src, dst):
# type: (str) -> str
"""
Copy from *src* to *dst*, making the destination directory if needed.
"""
if not exists(dst):
path = dirname(dst)
makedirs(path, exist_ok=True)
shutil.copy2(src, dst)
elif os.path.getmtime(src) > os.path.getmtime(dst):
shutil.copy2(src, dst)
def process_model(py_file, force=False):
# type: (str) -> None
"""
Generate doc file and image file for the given model definition file.
Does nothing if the corresponding rst file is newer than *py_file*.
Also checks the timestamp on the *genmodel.py* program (*__file__*),
since we want to rerun the generator on all files if we change this
code.
If *force* then generate the rst file regardless of time stamps.
"""
rst_file = joinpath(TARGET_DIR, basename(py_file).replace('.py', '.rst'))
if not (force or newer(py_file, rst_file) or newer(__file__, rst_file)):
#print("skipping", rst_file)
return rst_file
# Load the model file
model_info = core.load_model_info(py_file)
if model_info.basefile is None:
model_info.basefile = py_file
# Plotting ranges and options
PLOT_OPTS = {
'xscale' : 'log',
'yscale' : 'log' if not model_info.structure_factor else 'linear',
'zscale' : 'log' if not model_info.structure_factor else 'linear',
'q_min' : 0.001,
'q_max' : 1.0,
'nq' : 1000,
'nq2d' : 1000,
'vmin' : 1e-3, # floor for the 2D data results
'qx_max' : 0.5,
#'colormap' : 'gist_ncar',
'colormap' : 'nipy_spectral',
#'colormap' : 'jet',
}
# Generate the RST file and the figure. Order doesn't matter.
print("generating rst", rst_file)
print("1: docs")
gen_docs(model_info, rst_file)
print("2: figure", end='')
if force:
print()
make_figure(model_info, PLOT_OPTS)
else:
print(" (cached)")
make_figure_cached(model_info, PLOT_OPTS)
print("Done process_model")
return rst_file
def run_sphinx(rst_files, output):
"""
Use sphinx to build *rst_files*, storing the html in *output*.
"""
print("Building index...")
conf_dir = dirname(realpath(__file__))
with open(joinpath(TARGET_DIR, 'index.rst'), 'w') as fid:
fid.write(".. toctree::\n\n")
for path in rst_files:
fid.write(" %s\n"%basename(path))
print("Running sphinx command...")
command = [
sys.executable,
"-m", "sphinx",
"-c", conf_dir,
TARGET_DIR,
output,
]
process = subprocess.Popen(command, shell=False, stdout=subprocess.PIPE)
# Make sure we can see process output in real time
while True:
output = process.stdout.readline()
if process.poll() is not None:
break
if output:
print(output.strip())
def main():
"""
Process files listed on the command line via :func:`process_model`.
"""
import matplotlib
matplotlib.use('Agg')
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--cpus", type=int, default=-1, metavar="n",
help="number of cpus to use in build")
parser.add_argument("-f", "--force", action="store_true",
help="force rebuild (serial only)")
parser.add_argument("-r", "--rst", default="model", metavar="path",
help="path for the rst files")
parser.add_argument("-b", "--build", default="html", metavar="path",
help="path for the html files (if sphinx build)")
parser.add_argument("-s", "--sphinx", action="store_true",
help="build html docs for the model files")
parser.add_argument("files", nargs="+",
help="model files ")
args = parser.parse_args()
global TARGET_DIR
TARGET_DIR = os.path.expanduser(args.rst)
if not os.path.exists(TARGET_DIR) and not args.sphinx:
print("build directory %r does not exist"%TARGET_DIR)
sys.exit(1)
makedirs(TARGET_DIR, exist_ok=True)
print("** 'Normal' processing **")
rst_files = [process_model(py_file, args.force)
for py_file in args.files]
print("normal .rst file processing complete")
if args.sphinx:
print("running sphinx")
run_sphinx(rst_files, args.build)
if __name__ == "__main__":
main()
|