1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
.. pd_help.rst
.. This is a port of the original SasView html help file to ReSTructured text
.. by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
.. _polydispersityhelp:
Polydispersity & Orientational Distributions
============================================
For some models we can calculate the average intensity for a population of
particles that possess size and/or orientational (ie, angular) distributions
(see :ref:`PStheory` for more details). In SasView we call the former
*polydispersity* but use the parameter *PD* to parameterise both. In other
words, the meaning of *PD* in a model depends on the actual parameter it is
being applied too.
The resultant intensity is then normalized by the average particle volume such
that
.. math::
P(q) = \frac{\text{scale}}{\langle V \rangle} \langle F F^* \rangle + \text{background}
where $F$ is the scattering amplitude and $\langle\cdot\rangle$ denotes an
average over the distribution $f(x; \bar x, \sigma)$, giving
.. math::
P(q) = \frac{\text{scale}}{\langle V \rangle} \int_\mathbb{R}
f(x; \bar x, \sigma) F^2(q, x)\, dx + \text{background}
Each distribution is characterized by a center value $\bar x$ or
$x_\text{med}$, a width parameter $\sigma$ (note this is *not necessarily*
the standard deviation, so read the description carefully), the number of
sigmas $N_\sigma$ to include from the tails of the distribution, and the
number of points used to compute the average. The center of the distribution
is set by the value of the model parameter. The meaning of a polydispersity
parameter *PD* (not to be confused with a molecular weight distributions
in polymer science) in a model depends on the type of parameter it is being
applied too.
The distribution width applied to *volume* (ie, shape-describing) parameters
is relative to the center value such that $\sigma = \mathrm{PD} \cdot \bar x$.
However, the distribution width applied to *orientation* (ie, angle-describing)
parameters is just $\sigma = \mathrm{PD}$.
$N_\sigma$ determines how far into the tails to evaluate the distribution,
with larger values of $N_\sigma$ required for heavier tailed distributions.
The scattering in general falls rapidly with $qr$ so the usual assumption
that $f(r - 3\sigma_r)$ is tiny and therefore $f(r - 3\sigma_r)f(r - 3\sigma_r)$
will not contribute much to the average may not hold when particles are large.
This, too, will require increasing $N_\sigma$.
Users should note that the averaging computation is very intensive. Applying
polydispersion and/or orientational distributions to multiple parameters at
the same time, or increasing the number of points in the distribution, will
require patience! However, the calculations are generally more robust with
more data points or more angles.
The following distribution functions are provided:
* `Uniform Distribution`_
* `Rectangular Distribution`_
* `Gaussian Distribution`_
* `Boltzmann Distribution`_
* `Lognormal Distribution`_
* `Schulz Distribution`_
* `Array Distribution`_
* `User-defined Distributions`_
These distributions define the *number density* of the given population of
scatterers. The resulting scattering is then the number average over the
distribution.
**Beware: the default distribution for all parameters is the Gaussian
Distribution but this may not be suitable. See** `Suggested Applications`_ **below.**
.. note:: In 2009 IUPAC decided to introduce the new term 'dispersity' to replace
the term 'polydispersity' (see `Pure Appl. Chem., (2009), 81(2),
351-353 <http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf>`_
in order to make the terminology describing distributions of chemical
properties unambiguous. However, these terms are unrelated to the
proportional size distributions and orientational distributions used in
SasView models.
Calculation of I(q)
^^^^^^^^^^^^^^^^^^^
Let $w(r)$ be the *relative number* of particles of size $r$, **not the volume
fraction of particles**. $w(r)$ scales with the number density, $n(r)$.
The *volume fraction*, $\phi$, is the integrated volume of all particles, $V_p$,
divided by total volume, $V_t$
.. math::
:label: eq1
\phi = \frac{V_p}{V_t}
where $V_p$ is the number of particles, $N$, multiplied by the average particle volume
$\langle V(r) \rangle$
.. math::
:label: eq2
Vp = N \langle V(r) \rangle
The *number density* of particles, $n$, is the total number of particles divided by
the total volume
.. math::
:label: eq3
n = \frac{N}{V_t}
Since $w(r)$ is a distribution on the number of particles that (ideally) sums to one,
the number of particles of size $r$, $n(r)$, scales with $w(r)$ as
.. math::
:label: eq4
n(r) = \frac{w(r)}{\int w(r)dr} \cdot \frac{N}{V_t}
Rewriting :eq:`eq1` as $V_p = \phi V_t$ and substituting into :eq:`eq2` gives
$\phi V_t = N \langle V(r) \rangle$ which can then be solved for $N / V_t$
.. math::
:label: eq5
\frac{N}{V_t} = \frac{\phi}{\langle V(r) \rangle}
Substituting :eq:`eq5` into :eq:`eq4`, we get
.. math::
:label: eq6
n(r) = \frac{w(r)}{\int w(r)dr} \cdot \frac{\phi}{\langle V(r) \rangle}
Since $w(r)$ is the relative number of particles of size $r$, the average volume is
.. math::
:label: eq7
\langle V(r) \rangle = \frac{\int w(r)V(r)dr}{\int w(r)dr}
Substituting :eq:`eq7` into :eq:`eq6` then yields
.. math::
:label: eq8
n(r) = w(r) \cdot \frac{\phi}{\int w(r)V(r)dr}
Note that the second half of :eq:`eq8` is independent of $r$ and can slip out of the
integral, such that
.. math::
:label: eq9
I(q) = \int n(r) \langle F F^* \rangle dr
= \frac{\phi \int w(r) \langle F F^* \rangle dr}{\int w(r)V(r) dr}
Suggested Applications
^^^^^^^^^^^^^^^^^^^^^^
If applying polydispersion to parameters describing particle sizes, consider
using the `Lognormal Distribution`_ or `Schulz Distribution`_.
If applying polydispersion to parameters describing interfacial thicknesses
or orientations, consider using the `Gaussian Distribution`_ or
`Boltzmann Distribution`_.
If applying polydispersion to parameters describing angles, use the
`Uniform Distribution`_ or a *Maier-Saupe* distribution or a *Cyclic Gaussian*
distribution.
The `Array Distribution`_ provides a very simple means of implementing a
user-defined distribution, but without any fittable parameters. Greater
flexibility is conferred by using `User-defined Distributions`_.
Usage Notes
^^^^^^^^^^^
Beware of using distributions that are always positive (eg, the *Lognormal*) for
angles because angles can be negative! If in doubt, plot the polydispersity data
for the model and check!
The parameter bounds (ie, Min/Max) for polydispersion should be specified under the
Polydispersity tab on the FitPage. They are not formally linked to the bounds for
the parameter to which polydispersion is being applied that appear under the Model
tab. In other words, bounds on a *radius* parameter under Model are not the same as
bounds on a *distribution of radius* parameter under Polydispersity, and vice versa.
If a distribution exceeds its parameter bounds those weights outside the bounds are
excluded and the distribution is normalized such that the sum of the remaining
weights in the truncated distribution equal one.
Whilst PD values for 'size' parameters are in proportion to the mean, with values
normally lying in the range 0 – 1, PD values for 'angular' parameters represent the
actual width of the distribution in degrees, so values as high as 5 or 10 degrees
maybe necessary to describe oriented systems. Again, plotting the relevant
polydispersity data will easily show if a sensible value is being used.
When using an `Array Distribution`_, be aware that the polydispersity parameters,
and the parameter to which the distribution is being applied, cannot be fitted.
Additional distribution functions (and, indeed models) may be found on the
`Sasview Model Marketplace <http://marketplace.sasview.org/>`_.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Uniform Distribution
^^^^^^^^^^^^^^^^^^^^
The Uniform Distribution is defined as
.. math::
f(x) = \frac{1}{\text{Norm}}
\begin{cases}
1 & \text{for } |x - \bar x| \leq \sigma \\
0 & \text{for } |x - \bar x| > \sigma
\end{cases}
where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the
distribution, $\sigma$ is the half-width, and *Norm* is a normalization
factor which is determined during the numerical calculation.
The polydispersity in sasmodels is given by
.. math:: \text{PD} = \sigma / \bar x
.. figure:: pd_uniform.jpg
Uniform distribution.
The value $N_\sigma$ is ignored for this distribution.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Rectangular Distribution
^^^^^^^^^^^^^^^^^^^^^^^^
The Rectangular Distribution is defined as
.. math::
f(x) = \frac{1}{\text{Norm}}
\begin{cases}
1 & \text{for } |x - \bar x| \leq w \\
0 & \text{for } |x - \bar x| > w
\end{cases}
where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the
distribution, $w$ is the half-width, and *Norm* is a normalization
factor which is determined during the numerical calculation.
Note that the standard deviation and the half width $w$ are different!
The standard deviation is
.. math:: \sigma = w / \sqrt{3}
whilst the polydispersity in sasmodels is given by
.. math:: \text{PD} = \sigma / \bar x
.. figure:: pd_rectangular.jpg
Rectangular distribution.
.. note:: The Rectangular Distribution is deprecated in favour of the
Uniform Distribution above and is described here for backwards
compatibility with earlier versions of SasView only.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Gaussian Distribution
^^^^^^^^^^^^^^^^^^^^^
The Gaussian Distribution is defined as
.. math::
f(x) = \frac{1}{\text{Norm}}
\exp\left(-\frac{(x - \bar x)^2}{2\sigma^2}\right)
where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the
distribution and *Norm* is a normalization factor which is determined
during the numerical calculation.
The polydispersity in sasmodels is given by
.. math:: \text{PD} = \sigma / \bar x
.. figure:: pd_gaussian.jpg
Normal distribution.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Boltzmann Distribution
^^^^^^^^^^^^^^^^^^^^^^
The Boltzmann Distribution is defined here as
.. math::
f(x) = \frac{1}{\text{Norm}}
\exp\left(-\frac{ | x - \bar x | }{\sigma}\right)
where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the
distribution and *Norm* is a normalization factor which is determined
during the numerical calculation. Strictly speaking, however, this
function is a Laplace Distribution, of which the Boltzmann Distribution
is but a limiting case.
The width is defined as
.. math:: \sigma=\frac{k T}{E}
which is the inverse Boltzmann factor, where $k$ is the Boltzmann constant,
$T$ the temperature in Kelvin and $E$ a characteristic energy per particle.
.. figure:: pd_boltzmann.jpg
Boltzmann distribution.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Lognormal Distribution
^^^^^^^^^^^^^^^^^^^^^^
The Lognormal Distribution describes a function of $x$ where $\ln (x)$ has
a normal distribution. The result is a distribution that is skewed towards
larger values of $x$.
The Lognormal Distribution is defined as
.. math::
f(x) = \frac{1}{\text{Norm}}\frac{1}{x\sigma}
\exp\left(-\frac{1}{2}
\bigg(\frac{\ln(x) - \mu}{\sigma}\bigg)^2\right)
where *Norm* is a normalization factor which will be determined during
the numerical calculation, $\mu=\ln(x_\text{med})$ and $x_\text{med}$
is the *median* value of the *lognormal* distribution, but $\sigma$ is
a parameter describing the width of the underlying *normal* distribution.
$x_\text{med}$ will be the value given for the respective size parameter
in sasmodels, for example, *radius=60*.
The polydispersity in sasmodels is given by
.. math:: \text{PD} = \sigma = p / x_\text{med}
The mean value of the distribution is given by $\bar x = \exp(\mu+ \sigma^2/2)$
and the peak value by $\max x = \exp(\mu - \sigma^2)$.
The variance (the square of the standard deviation) of the *lognormal*
distribution is given by
.. math::
\nu = [\exp({\sigma}^2) - 1] \exp({2\mu + \sigma^2})
Note that larger values of PD might need a larger number of points
and $N_\sigma$.
.. figure:: pd_lognormal.jpg
Lognormal distribution for PD=0.1.
For further information on the Lognormal distribution see:
http://en.wikipedia.org/wiki/Log-normal_distribution
http://mathworld.wolfram.com/LogNormalDistribution.html
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Schulz Distribution
^^^^^^^^^^^^^^^^^^^
The Schulz (sometimes written Schultz) distribution is similar to the
Lognormal distribution, in that it is also skewed towards larger values of
$x$, but which has computational advantages over the Lognormal distribution.
The Schulz distribution is defined as
.. math::
f(x) = \frac{1}{\text{Norm}} (z+1)^{z+1}(x/\bar x)^z
\frac{\exp[-(z+1)x/\bar x]}{\bar x\Gamma(z+1)}
where $\bar x$ ($x_\text{mean}$ in the figure) is the mean of the
distribution, *Norm* is a normalization factor which is determined
during the numerical calculation, and $z$ is a measure of the width
of the distribution such that
.. math:: z = (1-p^2) / p^2
where $p$ is the polydispersity in sasmodels given by
.. math:: PD = p = \sigma / \bar x
and $\sigma$ is the RMS deviation from $\bar x$.
Note that larger values of PD might need a larger number of points
and $N_\sigma$. For example, for PD=0.7 with radius=60 |Ang|, at least
Npts>=160 and Nsigmas>=15 are required.
.. figure:: pd_schulz.jpg
Schulz distribution.
For further information on the Schulz distribution see:
`M Kotlarchyk & S-H Chen, J Chem Phys, (1983), 79, 2461 <https://doi.org/10.1063/1.446055>`_
`M Kotlarchyk, RB Stephens, and JS Huang, J Phys Chem, (1988), 92, 1533 <https://doi.org/10.1021/j100317a032>`_.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Array Distribution
^^^^^^^^^^^^^^^^^^
This user-definable distribution should be given as a simple ASCII text
file where the array is defined by two columns of numbers: $x$ and $f(x)$.
The $f(x)$ will be normalized to 1 during the computation.
Example of what an array distribution file should look like:
==== =====
30 0.1
32 0.3
35 0.4
36 0.5
37 0.6
39 0.7
41 0.9
==== =====
.. note:: Only these array values are used for computation, any other
polydispersity parameter values in the model have no effect and
will be ignored when computing the average. **This also means that
any parameter with an array distribution cannot be fitted.**
If representing continuous distributions, it is best to use a simple rectangle
rule integration with equally spaced $x$ values and the weight $f(x)$ chosen at
the center of each interval.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
User-defined Distributions
^^^^^^^^^^^^^^^^^^^^^^^^^^
You can also define your own distribution by creating a python file defining a
*Distribution* object with a *_weights* method. The *_weights* method takes
*center*, *sigma*, *lb* and *ub* as arguments, and can access *self.npts*
and *self.nsigmas* from the distribution. They are interpreted as follows:
* *center* the value of the shape parameter (for size dispersity) or zero
if it is an angular dispersity. This parameter may be fitted.
* *sigma* the width of the distribution, which is the polydispersity parameter
times the center for size dispersity, or the polydispersity parameter alone
for angular dispersity. This parameter may be fitted.
* *lb*, *ub* are the parameter limits (lower & upper bounds) given in the model
definition file. For example, a radius parameter has *lb* equal to zero. A
volume fraction parameter would have *lb* equal to zero and *ub* equal to one.
* *self.nsigmas* the distance to go into the tails when evaluating the
distribution. For a two parameter distribution, this value could be
co-opted to use for the second parameter, though it will not be available
for fitting.
* *self.npts* the number of points to use when evaluating the distribution.
The user will adjust this to trade calculation time for accuracy, but the
distribution code is free to return more or fewer, or use it for the third
parameter in a three parameter distribution.
As an example, the code following wraps the Laplace distribution from scipy stats::
import numpy as np
from scipy.stats import laplace
from sasmodels import weights
class Dispersion(weights.Dispersion):
r"""
Laplace distribution
.. math::
w(x) = e^{-\sigma |x - \mu|}
"""
type = "laplace"
default = dict(npts=35, width=0, nsigmas=3) # default values
def _weights(self, center, sigma, lb, ub):
x = self._linspace(center, sigma, lb, ub)
wx = laplace.pdf(x, center, sigma)
return x, wx
You can plot the weights for a given value and width using the following::
from numpy import inf
from matplotlib import pyplot as plt
from sasmodels import weights
# reload the user-defined weights
weights.load_weights()
x, wx = weights.get_weights('laplace', n=35, width=0.1, nsigmas=3, value=50,
limits=[0, inf], relative=True)
# plot the weights
plt.interactive(True)
plt.plot(x, wx, 'x')
The *self.nsigmas* and *self.npts* parameters are normally used to control
the accuracy of the distribution integral. The *self._linspace* function
uses them to define the *x* values (along with the *center*, *sigma*,
*lb*, and *ub* which are passed as parameters). If you repurpose npts or
nsigmas you will need to generate your own *x*. Be sure to honour the
limits *lb* and *ub*, for example to disallow a negative radius or constrain
the volume fraction to lie between zero and one.
To activate a user-defined distribution, put it in a file such as *distname.py*
in the *SAS_WEIGHTS_PATH* folder. This is defined with an environment
variable, defaulting to::
SAS_WEIGHTS_PATH=~/.sasview/weights
or on Windows::
SAS_WEIGHTS_PATH=%USERPROFILE%\.sasview\weights
The weights path is loaded on startup. To update the distribution definition
in a running application you will need to enter the following python commands::
import sasmodels.weights
sasmodels.weights.load_weights('path/to/distname.py')
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Note about DLS polydispersity
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Several measures of polydispersity abound in Dynamic Light Scattering (DLS) and
it should not be assumed that any of the following can be simply equated with
the polydispersity *PD* parameter used in SasView.
The dimensionless **Polydispersity Index (PI)** is a measure of the width of the
distribution of autocorrelation function decay rates (*not* the distribution of
particle sizes itself, though the two are inversely related) and is defined by
ISO 22412:2017 as
.. math::
PI = \mu_{2} / \bar \Gamma^2
where $\mu_\text{2}$ is the second cumulant, and $\bar \Gamma^2$ is the
intensity-weighted average value, of the distribution of decay rates.
*If the distribution of decay rates is Gaussian* then
.. math::
PI = \sigma^2 / 2\bar \Gamma^2
where $\sigma$ is the standard deviation, allowing a **Relative Polydispersity (RP)**
to be defined as
.. math::
RP = \sigma / \bar \Gamma = \sqrt{2 \cdot PI}
PI values smaller than 0.05 indicate a highly monodisperse system. Values
greater than 0.7 indicate significant polydispersity.
The **size polydispersity P-parameter** is defined as the relative standard
deviation coefficient of variation
.. math::
P = \sqrt\nu / \bar R
where $\nu$ is the variance of the distribution and $\bar R$ is the mean
value of $R$. Here, the product $P \bar R$ is *equal* to the standard
deviation of the Lognormal distribution.
P values smaller than 0.13 indicate a monodisperse system.
For more information see:
`ISO 22412:2017, International Standards Organisation (2017) <https://www.iso.org/standard/65410.html>`_.
`Polydispersity: What does it mean for DLS and Chromatography <http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-mean-for-dls-and-chromatography/>`_.
`Dynamic Light Scattering: Common Terms Defined, Whitepaper WP111214. Malvern Instruments (2011) <http://www.biophysics.bioc.cam.ac.uk/wp-content/uploads/2011/02/DLS_Terms_defined_Malvern.pdf>`_.
`S King, C Washington & R Heenan, Phys Chem Chem Phys, (2005), 7, 143 <https://doi.org/10.1039/B414175J>`_.
T Allen, in *Particle Size Measurement*, 4th Edition, Chapman & Hall, London (1990).
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Related sections
^^^^^^^^^^^^^^^^
See also:
:ref:`PStheory`
:ref:`Resolution_Smearing`
:ref:`Interaction_Models`
:ref:`orientation`
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
*Document History*
| 2015-05-01 Steve King
| 2017-05-08 Paul Kienzle
| 2018-03-20 Steve King
| 2018-04-04 Steve King
| 2018-08-09 Steve King
| 2021-11-03 Steve King
| 2022-10-30 Steve King
|