1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
.. resolution.rst
.. This is a port of the original SasView html help file sm_help to ReSTructured
.. text by S King, ISIS, during SasView CodeCamp-III in Feb 2015.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
.. _Resolution_Smearing:
Resolution (Smearing) Functions
===============================
Sometimes the instrumental geometry used to acquire the experimental data has
an impact on the clarity of features in the reduced scattering curve. For
example, peaks or fringes might be slightly broadened. This is known as
*Q resolution smearing*. To compensate for this effect one can either try and
remove the resolution contribution - a process called *desmearing* - or add the
resolution contribution into a model calculation/simulation (which by definition
will be exact) to make it more representative of what has been measured
experimentally - a process called *smearing*. The Sasmodels component of SasView
does the latter.
Both smearing and desmearing rely on functions to describe the resolution
effect. Sasmodels provides three smearing algorithms:
* *Slit Smearing*
* *Pinhole Smearing*
* *2D Smearing*
The $Q$ resolution values should be determined by the data reduction software
for the instrument and `stored with the data file <https://www.sasview.org/faq/#what-format-should-my-data-be-in>`_.
If not, they will need to be set manually before fitting.
.. note::
Problems may be encountered if the data set that is loaded is a
concatenation of SANS data from several detector distances where, of
course, the worst Q resolution is next to the beam stop at each detector
distance. (This will also be noticeable in the residuals plot where
there will be poor overlap). SasView sensibly orders all the input
data points by increasing Q for nicer-looking plots, however, the dQ
data can then vary considerably from point to point. If 'Use dQ data'
smearing is selected then spikes may appear in the model fits, whereas
if 'None' or 'Custom Pinhole Smear' are selected the fits look normal.
In such instances, possible solutions are to simply remove the data
with poor Q resolution from the shorter detector distances, or to fit
the data from different detector distances simultaneously.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Slit Smearing
-------------
**This type of smearing is normally only encountered with data from X-ray Kratky**
**cameras or X-ray/neutron Bonse-Hart USAXS/USANS instruments.**
The slit-smeared scattering intensity is defined by
.. math::
I_s = \frac{1}{\text{Norm}}
\int_{-\infty}^{\infty} dv\, W_v(v)
\int_{-\infty}^{\infty} du\, W_u(u)\,
I\left(\sqrt{(q+v)^2 + |u|^2}\right)
where *Norm* is given by
.. math:: \int_{-\infty}^{\infty} dv\, W_v(v) \int_{-\infty}^{\infty} du\, W_u(u)
**[Equation 1]**
The functions $W_v(v)$ and $W_u(u)$ refer to the slit width weighting
function and the slit length weighting determined at the given $q$ point,
respectively. It is assumed that the weighting function is described by a
rectangular function, such that
.. math:: W_v(v) = \delta(|v| \leq \Delta q_v)
**[Equation 2]**
and
.. math:: W_u(u) = \delta(|u| \leq \Delta q_u)
**[Equation 3]**
so that $\Delta q_\alpha = \int_0^\infty d\alpha\, W_\alpha(\alpha)$
for $\alpha$ as $v$ and $u$.
Here $\Delta q_u$ and $\Delta q_v$ stand for the the slit length (FWHM/2)
and the slit width (FWHM/2) in $q$ space.
This simplifies the integral in Equation 1 to
.. math::
I_s(q) = \frac{2}{\text{Norm}}
\int_{-\Delta q_v}^{\Delta q_v} dv
\int_{0}^{\Delta q_u}
du\, I\left(\sqrt{(q+v)^2 + u^2}\right)
**[Equation 4]**
which may be solved numerically, depending on the nature of
$\Delta q_u$ and $\Delta q_v$.
Solution 1
^^^^^^^^^^
**For** $\Delta q_v = 0$ **and** $\Delta q_u = \text{constant}$
.. math::
I_s(q) \approx \int_0^{\Delta q_u} du\, I\left(\sqrt{q^2+u^2}\right)
= \int_0^{\Delta q_u} d\left(\sqrt{q'^2-q^2}\right)\, I(q')
For discrete $q$ values, at the $q$ values of the data points and at the $q$
values extended up to $q_N = q_i + \Delta q_u$ the smeared
intensity can be approximately calculated as
.. math::
I_s(q_i)
\approx \sum_{j=i}^{N-1} \left[\sqrt{q_{j+1}^2 - q_i^2} - \sqrt{q_j^2 - q_i^2}\right]\, I(q_j)
\sum_{j=1}^{N-1} W_{ij}\, I(q_j)
**[Equation 5]**
where $W_{ij} = 0$ for $I_s$ when $j < i$ or $j > N-1$.
Solution 2
^^^^^^^^^^
**For** $\Delta q_v = \text{constant}$ **and** $\Delta q_u = 0$
Similar to Case 1
.. math::
I_s(q_i)
\approx \sum_{j=p}^{N-1} [q_{j+1} - q_i]\, I(q_j)
\approx \sum_{j=p}^{N-1} W_{ij}\, I(q_j)
for $q_p = q_i - \Delta q_v$ and $q_N = q_i + \Delta q_v$
**[Equation 6]**
where $W_{ij} = 0$ for $I_s$ when $j < p$ or $j > N-1$.
Solution 3
^^^^^^^^^^
**For** $\Delta q_v = \text{constant}$ **and** $\Delta q_u = \text{constant}$
In this case, the best way is to perform the integration of Equation 1
numerically for both slit length and slit width. However, the numerical
integration is imperfect unless a large number of iterations, say, at
least 10000 by 10000 for each element of the matrix $W$, is performed.
This is usually too slow for routine use.
An alternative approach is used in sasmodels which assumes
slit width << slit length. This method combines Solution 1 with the
numerical integration for the slit width. Then
.. math::
I_s(q_i)
&\approx \sum_{j=p}^{N-1} \sum_{k=-L}^L
\left[\sqrt{q_{j+1}^2 - (q_i + (k\Delta q_v/L))^2}
- \sqrt{q_j^2 - (q_i + (k\Delta q_v/L))^2}\right]
(\Delta q_v/L)\, I(q_j) \\
&\approx \sum_{j=p}^{N-1} W_{ij}\,I(q_j)
**[Equation 7]**
for $q_p = q_i - \Delta q_v$ and $q_N = q_i + \Delta q_v$
where $W_{ij} = 0$ for $I_s$ when $j < p$ or $j > N-1$.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Pinhole Smearing
----------------
**This is the type of smearing normally encountered with data from synchrotron**
**SAXS cameras and SANS instruments.**
The pinhole smearing computation is performed in a similar fashion to the
slit-smeared case above except that the weight function used is a Gaussian. Thus
Equation 6 becomes
.. math::
I_s(q_i)
&\approx \sum_{j=0}^{N-1}[\operatorname{erf}(q_{j+1})
- \operatorname{erf}(q_j)]\, I(q_j) \\
&\approx \sum_{j=0}^{N-1} W_{ij}\, I(q_j)
**[Equation 8]**
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
2D Smearing
-----------
The 2D smearing computation is performed in a similar fashion to the 1D pinhole
smearing above except that the weight function used is a 2D elliptical Gaussian.
Thus
.. math::
I_s(x_0,\, y_0)
&= A\iint dx'dy'\,
\exp \left[ -\left(\frac{(x'-x_0')^2}{2\sigma_{x_0'}^2}
+ \frac{(y'-y_0')^2}{2\sigma_{y_0'}}\right)\right] I(x',\, y') \\
&= A\sigma_{x_0'}\sigma_{y_0'}\iint dX dY\,
\exp\left[-\frac{(X^2+Y^2)}{2}\right] I(\sigma_{x_0'}X x_0',\, \sigma_{y_0'} Y + y_0') \\
&= A\sigma_{x_0'}\sigma_{y_0'}\iint dR d\Theta\,
R\exp\left(-\frac{R^2}{2}\right) I(\sigma_{x_0'}R\cos\Theta + x_0',\, \sigma_{y_0'}R\sin\Theta+y_0')
**[Equation 9]**
In Equation 9, $x_0 = q \cos(\theta)$, $y_0 = q \sin(\theta)$, and
the primed axes are all in the coordinate rotated by an angle $\theta$ about
the $z$\ -axis (see the figure below) so that
$x'_0 = x_0 \cos(\theta) + y_0 \sin(\theta)$ and
$y'_0 = -x_0 \sin(\theta) + y_0 \cos(\theta)$.
Note that the rotation angle is zero for a $x$-$y$ symmetric
elliptical Gaussian distribution. The $A$ is a normalization factor.
.. figure:: resolution_2d_rotation.png
Coordinate axis rotation for 2D resolution calculation.
Now we consider a numerical integration where each of the bins in $\theta$
and $R$ are *evenly* (this is to simplify the equation below) distributed
by $\Delta \theta$ and $\Delta R$ respectively, and it is further assumed
that $I(x',y')$ is constant within the bins. Then
.. math::
I_s(x_0,\, y_0)
&\approx A \sigma_{x'_0}\sigma_{y'_0}\sum_i^n
\Delta\Theta\left[\exp\left(\frac{(R_i-\Delta R/2)^2}{2}\right)
- \exp\left(\frac{(R_i + \Delta R/2)^2}{2}\right)\right]
I(\sigma_{x'_0} R_i\cos\Theta_i+x'_0,\, \sigma_{y'_0}R_i\sin\Theta_i + y'_0) \\
&\approx \sum_i^n W_i\, I(\sigma_{x'_0} R_i \cos\Theta_i + x'_0,\, \sigma_{y'_0}R_i\sin\Theta_i + y'_0)
**[Equation 10]**
Since the weighting factor on each of the bins is known, it is convenient to
transform $x'$-$y'$ back to $x$-$y$ coordinates (by rotating it
by $-\theta$ around the $z$\ -axis).
Then, for a polar symmetric smear
.. math::
I_s(x_0,\, y_0) \approx \sum_i^n W_i\,
I(x'\cos\theta - y'\sin\theta,\, x'sin\theta + y'\cos\theta)
**[Equation 11]**
where
.. math::
x' &= \sigma_{x'_0} R_i \cos\Theta_i + x'_0 \\
y' &= \sigma_{y'_0} R_i \sin\Theta_i + y'_0 \\
x'_0 &= q = \sqrt{x_0^2 + y_0^2} \\
y'_0 &= 0
while for a $x$-$y$ symmetric smear
.. math::
I_s(x_0,\, y_0) \approx \sum_i^n W_i\, I(x',\, y')
**[Equation 12]**
where
.. math::
x' &= \sigma_{x'_0} R_i \cos\Theta_i + x'_0 \\
y' &= \sigma_{y'_0} R_i \sin\Theta_i + y'_0 \\
x'_0 &= x_0 = q_x \\
y'_0 &= y_0 = q_y
The current version of sasmodels uses Equation 11 for 2D smearing, assuming
that all the Gaussian weighting functions are aligned in the polar coordinate.
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
Weighting & Normalization
-------------------------
In all the cases above, the weighting matrix $W$ is calculated on the first
call to a smearing function, and includes ~60 $q$ values (finely and evenly
binned) below (>0) and above the $q$ range of data in order to smear all
data points for a given model and slit/pinhole size. The *Norm* factor is
found numerically with the weighting matrix and applied on the computation
of $I_s$.
Related sections
----------------
See also:
:ref:`PStheory`
:ref:`polydispersityhelp`
:ref:`Interaction_Models`
:ref:`orientation`
.. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
*Document History*
| 2015-05-01 Steve King
| 2017-05-08 Paul Kienzle
| 2022-10-30 Steve King
|