1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
.. py:currentmodule:: sasmodels
.. _Scripting_Interface:
*******************
Scripting Interface
*******************
Preparing your environment
==========================
You can use python scripts to load and plot your data, create SAS models and fit parameters. You can save a script to a file such as `example/model.py` and run
it later. However, this requires a scripting environment with the correct packages installed.
You can *either* use the SasView application itself (versions after 5.0.5), as
both bumps and sasmodels are included as part of the distribution, so for
example on Windows::
> sasview model.py
(Note that it may be necessary to first add the folder path to sasmodels/sasview
to your *Path* environment variable for this to work; set PATH=%PATH%;C:\\your\\path\\here\\ . The folder path can be found in the
Help > About box if you are running the SasView GUI.)
*or* create a Python environment with pip::
> pip install sasmodels sasdata matplotlib bumps periodictable
> python model.py
(You can also create a Python environment using conda, see:
https://github.com/SasView/sasview/wiki/DevNotes_CondaDevEnviroment)
The pip command also works within a `Jupyter notebook <https://docs.jupyter.org/en/latest/install.html>`_ ::
%pip install sasmodels sasdata matplotlib bumps periodictable
On a Mac the command for invoking SasView will be something like::
/Applications/Sasview5.dmg/Contents/MacOS/sasview
depending on where it is actually installed. This can either be used directly
or can be symlinked into your path, for example::
mkdir ~/bin
ln -s /path/to/Applications/SasView5.dmg/Contents/MacOS/sasview ~/bin
Preparing your data
===================
The key functions are then :func:`.core.load_model` for loading the
model definition and compiling the kernel and
:func:`.data.load_data` for calling sasview to load the data.
Usually you will load data via the sasview loader, with the
:func:`.data.load_data` function. For example::
from sasmodels.data import load_data
data = load_data("sasmodels/example/093191_201.dat")
You may want to apply a data mask, such a beam stop, and trim high $q$::
from sasmodels.data import set_beam_stop
set_beam_stop(data, qmin, qmax)
The :func:`.data.set_beam_stop` method simply sets the *mask*
attribute for the data.
The data defines the resolution function and the q values to evaluate, so
even if you simulating experiments prior to making measurements, you still
need a data object for reference. Use :func:`.data.empty_data1D`
or :func:`.data.empty_data2D` to create a container with a
given $q$ and $\Delta q/q$. For example::
import numpy as np
from sasmodels.data import empty_data1D
# 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5%
q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120)
data = empty_data1D(q, resolution=0.05)
To use a more realistic model of resolution, or to load data from a file
format not understood by SasView, you can use :class:`.data.Data1D`
or :class:`.data.Data2D` directly. The 1D data uses
*x*, *y*, *dx* and *dy* for $x = q$ and $y = I(q)$, and 2D data uses
*x*, *y*, *z*, *dx*, *dy*, *dz* for $x, y = qx, qy$ and $z = I(qx, qy)$.
[Note: internally, the Data2D object uses SasView conventions,
*qx_data*, *qy_data*, *data*, *dqx_data*, *dqy_data*, and *err_data*.]
For USANS data, use 1D data, but set *dxl* and *dxw* attributes to
indicate slit resolution::
data.dxl = 0.117
See :func:`.resolution.slit_resolution` for details.
SESANS data is more complicated; if your SESANS format is not supported by
SasView you need to define a number of attributes beyond *x*, *y*. For
example::
SElength = np.linspace(0, 2400, 61) # [A]
data = np.ones_like(SElength)
err_data = np.ones_like(SElength)*0.03
class Source:
wavelength = 6 # [A]
wavelength_unit = "A"
class Sample:
zacceptance = 0.1 # [A^-1]
thickness = 0.2 # [cm]
class SESANSData1D:
#q_zmax = 0.23 # [A^-1]
lam = 0.2 # [nm]
x = SElength
y = data
dy = err_data
sample = Sample()
data = SESANSData1D()
x, y = ... # create or load sesans
data = smd.Data
The *data* module defines various data plotters as well.
Using sasmodels directly
========================
Once you have a computational kernel and a data object, you can evaluate
the model for various parameters using
:class:`.direct_model.DirectModel`. The resulting object *f*
will be callable as *f(par=value, ...)*, returning the $I(q)$ for the $q$
values in the data. For example::
import numpy as np
from sasmodels.data import empty_data1D
from sasmodels.core import load_model
from sasmodels.direct_model import DirectModel
# 120 points logarithmically spaced from 0.005 to 0.2, with dq/q = 5%
q = np.logspace(np.log10(5e-3), np.log10(2e-1), 120)
data = empty_data1D(q, resolution=0.05)
kernel = load_model("ellipsoid)
f = DirectModel(data, kernel)
Iq = f(radius_polar=100)
Polydispersity information is set with special parameter names:
* *par_pd* for polydispersity width, $\Delta p/p$,
* *par_pd_n* for the number of points in the distribution,
* *par_pd_type* for the distribution type (as a string), and
* *par_pd_nsigmas* for the limits of the distribution.
Using sasmodels through the bumps optimizer
===========================================
Like DirectModel, you can wrap data and a kernel in a *bumps* model with
:class:`.bumps_model.Model` and create a
:class:`.bumps_model.Experiment` that you can fit with the *bumps*
interface. Here is an example from the *example* directory such as
*example/model.py*::
import sys
from bumps.names import *
from sasmodels.core import load_model
from sasmodels.bumps_model import Model, Experiment
from sasmodels.data import load_data, set_beam_stop, set_top
""" IMPORT THE DATA USED """
radial_data = load_data('DEC07267.DAT')
set_beam_stop(radial_data, 0.00669, outer=0.025)
set_top(radial_data, -.0185)
kernel = load_model("ellipsoid")
model = Model(kernel,
scale=0.08,
radius_polar=15, radius_equatorial=800,
sld=.291, sld_solvent=7.105,
background=0,
theta=90, phi=0,
theta_pd=15, theta_pd_n=40, theta_pd_nsigma=3,
radius_polar_pd=0.222296, radius_polar_pd_n=1, radius_polar_pd_nsigma=0,
radius_equatorial_pd=.000128, radius_equatorial_pd_n=1, radius_equatorial_pd_nsigma=0,
phi_pd=0, phi_pd_n=20, phi_pd_nsigma=3,
)
# SET THE FITTING PARAMETERS
model.radius_polar.range(15, 1000)
model.radius_equatorial.range(15, 1000)
model.theta_pd.range(0, 360)
model.background.range(0,1000)
model.scale.range(0, 10)
#cutoff = 0 # no cutoff on polydisperisity loops
#cutoff = 1e-5 # default cutoff
cutoff = 1e-3 # low precision cutoff
M = Experiment(data=radial_data, model=model, cutoff=cutoff)
problem = FitProblem(M)
To run the model from your python environment use the installed *bumps* program::
> bumps example/model.py --preview
Alternatively, on Windows, bumps can be called from the cmd prompt
as follows::
> sasview -m bumps.cli example/model.py --preview
Calling the computation kernel
==============================
Getting a simple function that you can call on a set of q values and return
a result is not so simple. Since the time critical use case (fitting) involves
calling the function over and over with identical $q$ values, we chose to
optimize the call by only transfering the $q$ values to the GPU once at the
start of the fit. We do this by creating a :class:`.kernel.Kernel`
object from the :class:`.kernel.KernelModel` returned from
:func:`.core.load_model` using the
:meth:`.kernel.KernelModel.make_kernel` method. What it actual
does depends on whether it is running as a DLL, as OpenCL or as a pure
python kernel. Once the kernel is in hand, we can then marshal a set of
parameters into a :class:`.details.CallDetails` object and ship it to
the kernel using the :func:`.direct_model.call_kernel` function. To
accesses the underlying $<F(q)>$ and $<F^2(q)>$, use
:func:`.direct_model.call_Fq` instead.
The following example should
help, *example/cylinder_eval.py*::
from numpy import logspace, sqrt
from matplotlib import pyplot as plt
from sasmodels.core import load_model
from sasmodels.direct_model import call_kernel, call_Fq
model = load_model('cylinder')
q = logspace(-3, -1, 200)
kernel = model.make_kernel([q])
pars = {'radius': 200, 'radius_pd': 0.1, 'scale': 2}
Iq = call_kernel(kernel, pars)
F, Fsq, Reff, V, Vratio = call_Fq(kernel, pars)
plt.loglog(q, Iq, label='2 I(q)')
plt.loglog(q, F**2/V, label='<F(q)>^2/V')
plt.loglog(q, Fsq/V, label='<F^2(q)>/V')
plt.xlabel('q (1/A)')
plt.ylabel('I(q) (1/cm)')
plt.title('Cylinder with radius 200.')
plt.legend()
plt.show()
.. figure:: direct_call.png
Comparison between $I(q)$, $<F(q)>$ and $<F^2(q)>$ for cylinder model.
This compares $I(q)$ with $<F(q)>$ and $<F^2(q)>$ for a cylinder
with *radius=200 +/- 20* and *scale=2*. Note that *call_Fq* does not
include scale and background, nor does it normalize by the average volume.
The definition of $F = \rho V \hat F$ scaled by the contrast and
volume, compared to the canonical cylinder $\hat F$, with $\hat F(0) = 1$.
Integrating over polydispersity and orientation, the returned values are
$\sum_{r,w\in N(r_o, r_o/10)} \sum_\theta w F(q,r_o,\theta)\sin\theta$ and
$\sum_{r,w\in N(r_o, r_o/10)} \sum_\theta w F^2(q,r_o,\theta)\sin\theta$.
On Windows, this example can be called from the cmd prompt using sasview as
as the python interpreter::
> sasview example/cylinder_eval.py
Using sasmodels and bumps from a Jupyter notebook
=================================================
You can also use sasmodels/bumps to fit experimental data from a
`Jupyter notebook <https://docs.jupyter.org/en/latest/install.html>`_ by
constructing and computing the model in an analogous manner to that shown above.
For an example notebook see:
https://github.com/SasView/documents/blob/master/Notebooks/sasmodels_fitting.ipynb
|