1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
==========
Quickstart
==========
Loading and accessing data
==========================
.. testsetup:: *
>>> import sys
>>> reload(sys)
>>> sys.setdefaultencoding('utf8')
To work with weather satellite data you must create a
:class:`~satpy.scene.Scene` object. Satpy does not currently provide an
interface to download satellite data, it assumes that the data is on a
local hard disk already. In order for Satpy to get access to the data the
Scene must be told what files to read and what
:ref:`Satpy Reader <reader_table>` should read them:
>>> from satpy import Scene
>>> from glob import glob
>>> filenames = glob("/home/a001673/data/satellite/Meteosat-10/seviri/lvl1.5/2015/04/20/HRIT/*201504201000*")
>>> global_scene = Scene(reader="seviri_l1b_hrit", filenames=filenames)
To load data from the files use the :meth:`Scene.load <satpy.scene.Scene.load>`
method. Printing the Scene object will list each of the
:class:`xarray.DataArray` objects currently loaded:
>>> global_scene.load(['0.8', '1.6', '10.8'])
>>> print(global_scene)
<xarray.DataArray 'reshape-d66223a8e05819b890c4535bc7e74356' (y: 3712, x: 3712)>
dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:
* x (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
* y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:
orbital_parameters: {'projection_longitude': 0.0, 'pr...
sensor: seviri
platform_name: Meteosat-11
standard_name: brightness_temperature
units: K
wavelength: (9.8, 10.8, 11.8)
start_time: 2018-02-28 15:00:10.814000
end_time: 2018-02-28 15:12:43.956000
area: Area ID: some_area_name\nDescription: On-the-fly ar...
name: IR_108
resolution: 3000.40316582
calibration: brightness_temperature
polarization: None
level: None
modifiers: ()
ancillary_variables: []
<xarray.DataArray 'reshape-1982d32298aca15acb42c481fd74a629' (y: 3712, x: 3712)>
dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:
* x (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
* y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:
orbital_parameters: {'projection_longitude': 0.0, 'pr...
sensor: seviri
platform_name: Meteosat-11
standard_name: toa_bidirectional_reflectance
units: %
wavelength: (0.74, 0.81, 0.88)
start_time: 2018-02-28 15:00:10.814000
end_time: 2018-02-28 15:12:43.956000
area: Area ID: some_area_name\nDescription: On-the-fly ar...
name: VIS008
resolution: 3000.40316582
calibration: reflectance
polarization: None
level: None
modifiers: ()
ancillary_variables: []
<xarray.DataArray 'reshape-e86d03c30ce754995ff9da484c0dc338' (y: 3712, x: 3712)>
dask.array<shape=(3712, 3712), dtype=float32, chunksize=(464, 3712)>
Coordinates:
* x (x) float64 5.567e+06 5.564e+06 5.561e+06 5.558e+06 5.555e+06 ...
* y (y) float64 -5.567e+06 -5.564e+06 -5.561e+06 -5.558e+06 ...
Attributes:
orbital_parameters: {'projection_longitude': 0.0, 'pr...
sensor: seviri
platform_name: Meteosat-11
standard_name: toa_bidirectional_reflectance
units: %
wavelength: (1.5, 1.64, 1.78)
start_time: 2018-02-28 15:00:10.814000
end_time: 2018-02-28 15:12:43.956000
area: Area ID: some_area_name\nDescription: On-the-fly ar...
name: VIS006
resolution: 3000.40316582
calibration: reflectance
polarization: None
level: None
modifiers: ()
ancillary_variables: []
Satpy allows loading file data by wavelengths in micrometers (shown above) or by channel name::
>>> global_scene.load(["VIS008", "IR_016", "IR_108"])
To have a look at the available channels for loading from your :class:`~satpy.scene.Scene` object use the
:meth:`~satpy.scene.Scene.available_dataset_names` method:
>>> global_scene.available_dataset_names()
['HRV',
'IR_108',
'IR_120',
'VIS006',
'WV_062',
'IR_039',
'IR_134',
'IR_097',
'IR_087',
'VIS008',
'IR_016',
'WV_073']
To access the loaded data use the wavelength or name:
>>> print(global_scene[0.8])
For more information on loading datasets by resolution, calibration, or other
advanced loading methods see the :doc:`reading` documentation.
Calculating measurement values and navigation coordinates
=========================================================
Once loaded, measurement values can be calculated from a DataArray within a scene, using .values to get a fully calculated numpy array:
>>> vis008 = global_scene["VIS008"]
>>> vis008_meas = vis008.values
Note that for very large images, such as half-kilometer geostationary imagery, calculated measurement arrays may require multiple gigabytes of memory; using deferred computation and/or subsetting of datasets may be preferred in such cases.
The 'area' attribute of the DataArray, if present, can be converted to latitude and longitude arrays. For some instruments (typically polar-orbiters), the get_lonlats() may result in arrays needing an additional .compute() or .values extraction.
>>> vis008_lon, vis008_lat = vis008.attrs['area'].get_lonlats()
Visualizing data
================
To visualize loaded data in a pop-up window:
>>> global_scene.show(0.8)
Alternatively if working in a Jupyter notebook the scene can be converted to
a `geoviews <https://geoviews.org>`_ object using the
:meth:`~satpy.scene.Scene.to_geoviews` method. The geoviews package is not a
requirement of the base satpy install so in order to use this feature the user
needs to install the geoviews package himself.
>>> import holoviews as hv
>>> import geoviews as gv
>>> import geoviews.feature as gf
>>> gv.extension("bokeh", "matplotlib")
>>> %opts QuadMesh Image [width=600 height=400 colorbar=True] Feature [apply_ranges=False]
>>> %opts Image QuadMesh (cmap='RdBu_r')
>>> gview = global_scene.to_geoviews(vdims=[0.6])
>>> gview[::5,::5] * gf.coastline * gf.borders
Creating new datasets
=====================
Calculations based on loaded datasets/channels can easily be assigned to a new dataset:
>>> global_scene.load(['VIS006', 'VIS008'])
>>> global_scene["ndvi"] = (global_scene['VIS008'] - global_scene['VIS006']) / (global_scene['VIS008'] + global_scene['VIS006'])
>>> global_scene.show("ndvi")
When doing calculations Xarray, by default, will drop all attributes so attributes need to be
copied over by hand. The :func:`combine_metadata <satpy.dataset.metadata.combine_metadata>` function can assist with this task.
Assigning additional custom metadata is also possible.
>>> from satpy.dataset import combine_metadata
>>> scene['new_band'] = scene['VIS008'] / scene['VIS006']
>>> scene['new_band'].attrs = combine_metadata(scene['VIS008'], scene['VIS006'])
>>> scene['new_band'].attrs['some_other_key'] = 'whatever_value_you_want'
Generating composites
=====================
Satpy comes with many composite recipes built-in and makes them loadable like any other dataset:
>>> global_scene.load(['overview'])
To get a list of all available composites for the current scene:
>>> global_scene.available_composite_names()
['overview_sun',
'airmass',
'natural_color',
'night_fog',
'overview',
'green_snow',
'dust',
'fog',
'natural_color_raw',
'cloudtop',
'convection',
'ash']
Loading composites will load all necessary dependencies to make that composite and unload them after the composite
has been generated.
.. note::
Some composite require datasets to be at the same resolution or shape. When this is the case the Scene object must
be resampled before the composite can be generated (see below).
Resampling
==========
.. todo::
Explain where and how to define new areas
In certain cases it may be necessary to resample datasets whether they come
from a file or are generated composites. Resampling is useful for mapping data
to a uniform grid, limiting input data to an area of interest, changing from
one projection to another, or for preparing datasets to be combined in a
composite (see above). For more details on resampling, different resampling
algorithms, and creating your own area of interest see the
:doc:`resample` documentation. To resample a Satpy Scene:
>>> local_scene = global_scene.resample("eurol")
This creates a copy of the original ``global_scene`` with all loaded datasets
resampled to the built-in "eurol" area. Any composites that were requested,
but could not be generated are automatically generated after resampling. The
new ``local_scene`` can now be used like the original ``global_scene`` for
working with datasets, saving them to disk or showing them on screen:
>>> local_scene.show('overview')
>>> local_scene.save_dataset('overview', './local_overview.tif')
Saving to disk
==============
To save all loaded datasets to disk as geotiff images:
>>> global_scene.save_datasets()
To save all loaded datasets to disk as PNG images:
>>> global_scene.save_datasets(writer='simple_image')
Or to save an individual dataset:
>>> global_scene.save_dataset('VIS006', 'my_nice_image.png')
Datasets are automatically scaled or "enhanced" to be compatible with the
output format and to provide the best looking image. For more information
on saving datasets and customizing enhancements see the documentation on
:doc:`writing`.
Slicing and subsetting scenes
=============================
Array slicing can be done at the scene level in order to get subsets with consistent navigation throughout. Note that this does not take into account scenes that may include channels at multiple resolutions, i.e. index slicing does not account for dataset spatial resolution.
>>> scene_slice = global_scene[2000:2004, 2000:2004]
>>> vis006_slice = scene_slice['VIS006']
>>> vis006_slice_meas = vis006_slice.values
>>> vis006_slice_lon, vis006_slice_lat = vis006_slice.attrs['area'].get_lonlats()
To subset multi-resolution data consistently, use the :meth:`~satpy.scene.Scene.crop` method.
>>> scene_llbox = global_scene.crop(ll_bbox=(-4.0, -3.9, 3.9, 4.0))
>>> vis006_llbox = scene_llbox['VIS006']
>>> vis006_llbox_meas = vis006_llbox.values
>>> vis006_llbox_lon, vis006_llbox_lat = vis006_llbox.attrs['area'].get_lonlats()
.. _user_warnings_errors:
Warnings and Errors
===================
Throughout the calculations that Satpy performs you may see various warnings
or if you have logging enabled (see :ref:`troubleshooting` below) see warning
or error log messages. There are some warnings emitted as part of Satpy's
processing that originate in the libraries that Satpy depends on, but are
mostly expected due to the way Satpy does its calculations and the data that
Satpy is working with. Except for in special cases, Satpy does not generally
hide or ignore these warnigns from dependencies and it is left to the user
to control how they'd like to handle them.
Many of the data arrays that Satpy works with use NaN values to indicate
invalid, masked, or bad quality pixels. Some calculations or libraries
emit a warning or error when they encounter NaNs. For example, Numpy will
often emit warnings like::
RuntimeWarning: invalid value encountered in multiply
For the most part these warnings are expected. For single Satpy-based scripts
it is recommend to ignore these warnings from numpy globally using
the :func:`numpy.seterr` or :class:`numpy.errstate` functions:
.. code-block:: python
import numpy as np
np.seterr(invalid="ignore")
.. _troubleshooting:
Troubleshooting
===============
When something goes wrong, a first step to take is check that the latest Version
of satpy and its dependencies are installed. Satpy drags in a few packages as
dependencies per default, but each reader and writer has it's own dependencies
which can be unfortunately easy to miss when just doing a regular `pip install`.
To check the missing dependencies for the readers and writers, a utility
function called :func:`~satpy.utils.check_satpy` can be used:
>>> from satpy.utils import check_satpy
>>> check_satpy()
Due to the way Satpy works, producing as many datasets as possible, there are
times that behavior can be unexpected but with no exceptions raised. To help
troubleshoot these situations log messages can be turned on. To do this run
the following code before running any other Satpy code:
>>> from satpy.utils import debug_on
>>> debug_on()
|