File: stats_utils.c

package info (click to toggle)
savi 1.5.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 2,824 kB
  • sloc: ansic: 6,932; tcl: 5,011; makefile: 266; sh: 237
file content (665 lines) | stat: -rw-r--r-- 18,351 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
 *****************************************************
 *
 *  SaVi by Lloyd Wood (lloydwood@users.sourceforge.net),
 *          Patrick Worfolk (worfolk@alum.mit.edu) and
 *          Robert Thurman.
 *
 *  Copyright (c) 1997 by The Geometry Center.
 *  Also Copyright (c) 2017 by Lloyd Wood.
 *
 *  This file is part of SaVi.  SaVi is free software;
 *  you can redistribute it and/or modify it only under
 *  the terms given in the file COPYRIGHT which you should
 *  have received along with this file.  SaVi may be
 *  obtained from:
 *  http://savi.sourceforge.net/
 *  http://www.geom.uiuc.edu/locate/SaVi
 *
 *****************************************************
 *
 * stats_utils.c
 *
 * $Id: stats_utils.c,v 1.46 2017/06/07 21:34:22 lloydwood Exp $
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "sats.h"
#include "constants.h"
#include "globals.h"
#include "stats_utils.h"
#include "orbit_utils.h"
#include "utils.h"


static void orient_circle(double t, CartesianCoordinates *pc,
			  CartesianCoordinates *pu,
			  CartesianCoordinates *pv,
			  const CentralBody *pcb);
static void footprint_circle(CartesianCoordinates *pc,
			     CartesianCoordinates *pu,
			     CartesianCoordinates *pv,
			     int fp_angle_type, double footprint_angle,
			     CartesianCoordinates *py, const CentralBody *pcb);
static double footprint_circle_radius(double l,
				      int fp_angle_type,
				      double footprint_angle);
static void intensity_circle_footprint(CartesianCoordinates *pc,
				       CartesianCoordinates *pu,
				       CartesianCoordinates *pv,
				       int current_projection, grid *g,
				       int special);

static void increment_intensity (int row, int column, grid *g, int special);
static void circle_point(SphericalCoordinates *point,
			 CartesianCoordinates *pc,
			 CartesianCoordinates *pu,
			 CartesianCoordinates *pv,
			 double t);
static void intensity_index(int grid_index[2], SphericalCoordinates *point,
			    int current_projection, grid *g);
static void cap_pole(CartesianCoordinates *pc, CartesianCoordinates *pu,
		     CartesianCoordinates *pv,
		     int current_projection, grid *g, int special);
static void project_sinusoidal(double proj[2], SphericalCoordinates *point);
static void project_cylindrical(double proj[2], SphericalCoordinates *point);
static void project_unprojected(double proj[2], SphericalCoordinates *point);
static void project_spherical(double proj[2], SphericalCoordinates *point);

/*
 * Initialize the coverage grid
 */
grid*
create_grid(int h, int w)
{
  grid *pg;

  pg=(grid *) malloc(sizeof(grid));

  pg->data=(int *) malloc(h * w *sizeof(int));
  pg->noaccess=(int *) malloc(h * w * sizeof(int));
  pg->covered=(int *) malloc(h * sizeof(int));

  pg->height=h;
  pg->width=w;
  pg->count = 0;

  return pg;
}

/*
 * Free space allocated to a coverage grid.
 */
void
destroy_grid(grid *g)
{
  free(g->data);
  free(g->noaccess);
  free(g->covered);

  free(g);
}
/*
 * Clear the intensity array.
 */
void
clear_intensity(grid * g)
{
  unsigned int block;

  block = sizeof(int) * g->height * g->width;
  memset(g->data, 0, (size_t) block);
  memset(g->covered, 0, (size_t) sizeof(int) * g->height);
  g->count = 0;
}

/*
 * fill interval-decay with fixed value meaning many intervals since coverage
 */
void
fill_interval(grid * g, int value)
{
  unsigned int block;

  block = sizeof(int) * g->height * g->width;
  memset(g->noaccess, value, (size_t) block);
}

/*
 * Increment everything on the interval grid towards decay.
 */
void
decay_interval(grid * g)
{
  unsigned int i;
  unsigned int image_size = g->height * g->width;

  for (i = 0; i < image_size; i++) {
  	(g->noaccess[i])++;
  }
}

/*
 * Fill out the coverage grid.
 */
void
fill_grid(const Satellite_list SL, int current_projection, int fp_angle_type,
	   double footprint_angle, const CentralBody *pcb, grid *g)
{
  CartesianCoordinates c, u, v;
  Satellite_list sl;
  double angle, a;

  /* first satellite is special sunlight approximation */
  int sunlight = TRUE;
  if (fp_angle_type == MASK_ELEVATION) {
    angle = 0;
  } else {
    angle = HALFPI;
  }

  for (sl = SL; NULL != sl; sl = sl->next) {
    if (sl->s->can_display_coverage) {
      a = sl->s->x_S.r - pcb->radius;
      if (!sunlight && ((min_transmit_altitude > 0)||(max_transmit_altitude > 0))) {
        if (a <= min_transmit_altitude) {
           continue;
        }
        if (a >= max_transmit_altitude) {
           continue;
        }
      }
      footprint_circle(&c, &u, &v, fp_angle_type, angle,
		       &(sl->s->x_C), pcb);
      orient_circle(sl->s->t, &c, &u, &v, pcb);
      intensity_circle_footprint(&c, &u, &v, current_projection, g, sunlight);
    }
    if (sunlight) {
      angle = footprint_angle;
      sunlight = FALSE;
    }
  }
}

/*
 * Given orbital elements, compute circular footprint of a satellite.
 *
 * The circle is normalized to lie on a unit radius reference sphere, and
 * is specified by a center c and basis vectors u and v, in normalized
 * geocentric coordinates.  The parametrization is thus c+cos(t)u + sin(t)v.
 */
static void
footprint_circle(CartesianCoordinates *pc, CartesianCoordinates *pu,
		 CartesianCoordinates *pv,
		 int fp_angle_type, double footprint_angle,
		 CartesianCoordinates *py, const CentralBody *pcb)
{
  SphericalCoordinates z;
  CartesianCoordinates w;
  double ly, l, d, r, ip;

/* The center first */

  ly = norm(py);
  l = ly/pcb->radius;
  r = footprint_circle_radius( l, fp_angle_type, footprint_angle);
  d = sqrt(1-r*r);
  ip = d / ly;
  pc->x = py->x*ip;
  pc->y = py->y*ip;
  pc->z = py->z*ip;

/* Now the "up" basis vector. */

  cartesian_to_spherical(&z, py);
  z.r = 1;
  z.phi -= asin(r);

  if (debug) fprintf(stderr, "r=%.4f dphi=%.4f y=(%.2f, %.2f, %.2f)\n", \
	  r, asin(r), z.r, z.theta, z.phi);

  spherical_to_cartesian(&w, &z);
  pu->x = w.x-pc->x;
  pu->y = w.y-pc->y;
  pu->z = w.z-pc->z;

/* The final basis vector we can take to be the cross-product c x u,
 * normalized to have same length as u (that is, r).  Notice, then, that
 * v points to the "left". */

  cross_product( pv, pc, pu );
  pv->x /= d;
  pv->y /= d;
  pv->z /= d;
}

/*
 * orient_circle
 *
 * For displaying onto the coverage map, the footprint circle vectors need
 * to be rotated around the z-axis so that Longitude_Center_Line appears
 * at geocentric equatorial theta=0.
 */
static void
orient_circle(double t, CartesianCoordinates *pc,
	      CartesianCoordinates *pu, CartesianCoordinates *pv,
	      const CentralBody *pcb)
{
  SphericalCoordinates p;
  CartesianCoordinates w;

/* Find the geocentric equatorial spherical coordinates of the specified */
/* longitude at the current time.  Then rotate all vectors by minus this */
/* angle about the z-axis.                                               */

  lat_lon_to_spherical (0.0, (double) Longitude_Center_Line, t, pcb, &p);

  rotate_z(pc, -p.theta, &w);
  pc->x = w.x;
  pc->y = w.y;
  pc->z = w.z;

  rotate_z(pu, -p.theta, &w);
  pu->x = w.x;
  pu->y = w.y;
  pu->z = w.z;

  rotate_z(pv, -p.theta, &w);
  pv->x = w.x;
  pv->y = w.y;
  pv->z = w.z;
}

/*
 * Given the normalized distance to the spacecraft, compute the radius of
 * a circular footprint.
 */
static double
footprint_circle_radius( double L, int fp_angle_type, double footprint_angle)
{
  double sa = sin(footprint_angle);
  double ca = cos(footprint_angle);

  if (fp_angle_type == MASK_ELEVATION) {

      if (L < 1) {
          /*
           * Avoid NaN oddities and overflows when satellite drops below
	   * Earth surface.
           * Only do this for mask elevation, because the invert effect for
           * satellite cones is very cool and safe.
           */
          L = 1;
      }

    if (debug) fprintf(stderr, "Mask elevation = %f radians.\n", footprint_angle);

    return( ca*(sqrt(1-ca*ca/L/L)-sa/L) );
  } else {

    if (debug) fprintf(stderr, "Sat cone angle = %f radians.\n", footprint_angle);

    if ( L >= 1/sa )
      return( sqrt(L*L-1)/L );
    else
      return( sa*(L*ca-sqrt(1-L*L*sa*sa)) );
  }
}

/*
 * Increment the intensity image, circular footprint.
 */
static void
intensity_circle_footprint(CartesianCoordinates *pc, CartesianCoordinates *pu,
			   CartesianCoordinates *pv, int current_projection,
			   grid *g, int special)
{
  double t, dt, t_final;
  SphericalCoordinates point;
  int j, row, prev_row, left[2], right[2], left_edge[2], right_edge[2];

  /* compute phi increment so that we fill in each row of grid */
  switch (current_projection) {
  case UNPROJECTED:
  case UNPROJECTED_MASK:
  case SINUSOIDAL:
  case SINUSOIDAL_90:
    dt = PI/(g->height-1)/norm(pu);
    break;
  case SPHERICAL:
  case SPHERICAL_90:
  case CYLINDRICAL:
  default:
    dt = 2.0/(g->height-1)/norm(pu);
  }

  t_final = PI;

  circle_point(&point, pc, pu, pv, 0.0);
  intensity_index(left, &point, current_projection, g);
  increment_intensity(left[1], left[0], g, special);
  row=left[1];
  prev_row=row;

  for (t=dt; t<t_final; t+=dt) {
    circle_point(&point, pc, pu, pv, t);
    intensity_index(left, &point, current_projection, g);
    row = left[1];
    if (row != prev_row) {
      if ( abs(row-prev_row) > 1 ) {
	fprintf(stderr, "Intensity: row skipped. Prev=%i,current=%i.\n",
		prev_row, row);
      }
      circle_point(&point, pc, pu, pv, TWOPI-t);
      intensity_index(right, &point, current_projection, g);

      if (left[0] <= right[0]) {
	for (j = left[0]; j <= right[0]; j++) {
	  increment_intensity(row,j,g, special);
	}
      } else {
	intensity_edges(left_edge, right_edge, &point, current_projection, g);
	for(j = left_edge[0]; j <= right[0]; j++) {
	  increment_intensity(row,j,g, special);
	}
	for(j = left[0]; j < right_edge[0]; j++) {
	  increment_intensity(row,j,g, special);
	}
      }
      prev_row = row;
    }
  }

  /*
   * Footprint caps one of the poles if projection of center vector c onto
   * x,y plane has magnitude less than magnitude of projection of circle basis
   * vector u (u always points in direction of north pole from c).
   */
  if ( pc->x*pc->x+pc->y*pc->y < pu->x*pu->x+pu->y*pu->y ) {
    cap_pole( pc, pu, pv, current_projection, g, special);
  }
}

/*
 * Increment the intensity image at given row and column.
 * (row ranges from 0 to g->height-1,
 *  column from 0 to g->width-1.)
 */
static void
increment_intensity(int row, int column, grid *g, int special)
{
  unsigned int k;

  k = g->width * row + column;

  if (!special && ( 0 == (g->data[k])++) ) {
    if (sun_flag) {
      (g->noaccess[k]) = NUM_COLORS - 1;
    } else {
      (g->noaccess[k]) = 0;
    }
    (g->covered[row])++;
    (g->count)++;
  } else {
      if (sun_flag) {
	(g->noaccess[k]) = NUM_COLORS - 1;
      }
      if (!special) {
	(g->covered[row])++;
        (g->count)++;
      }
  }
}

/*
 * For time t, return the spherical coordinates of the point
 * c+cos(t)u+sin(t)v on circle with center c and basis vectors u and v.
 */
static void
circle_point(SphericalCoordinates *point, CartesianCoordinates *pc,
	     CartesianCoordinates *pu, CartesianCoordinates *pv, double t )
{
  CartesianCoordinates temp;
  float ct = cos(t), st = sin(t);

  temp.x = pc->x+ct*pu->x+st*pv->x;
  temp.y = pc->y+ct*pu->y+st*pv->y;
  temp.z = pc->z+ct*pu->z+st*pv->z;
  cartesian_to_spherical(point, &temp);
}

/*
 * Given point on unit sphere in spherical coordinates, return corresponding
 * index into coverage intensity grid.
 *        grid_index[0]=column index, grid_index[1]=row index.
 */
static void
intensity_index(int grid_index[2], SphericalCoordinates *point,
		int current_projection, grid *g)
{
  double proj[2];

  switch (current_projection) {
  case UNPROJECTED:
  case UNPROJECTED_MASK:
    project_unprojected(proj, point);
    break;
  case SINUSOIDAL:
  case SINUSOIDAL_90:
    project_sinusoidal(proj, point);
    break;
  case SPHERICAL:
  case SPHERICAL_90:
    project_spherical(proj,point);
    break;
  case CYLINDRICAL:
  default:
    project_cylindrical(proj, point);
  }

  /* It's assumed that proj[0] ranges from -PI to PI no matter what. */
  grid_index[0]=((int) ((proj[0]+PI)*(g->width)/TWOPI));
  grid_index[1]=((int) (proj[1]*(g->height-1)/PI));
}

/*
 * Increment intensity image for a polar cap.
 *
 * The routine increments those image pixels corresponding to the largest
 * disk centered at the pole contained within the footprint.  We're helped
 * here by the fact that u, when based at the tip of the center vector c,
 * always points in the direction of the north pole.  So for north pole
 * caps, we simply increment rows 0 through the row corresponding to c+u.
 *
 * For south poles, the vector c-u is the closest point in the footprint
 * to the pole, so we increment that row through the final row.
 */
static void
cap_pole(CartesianCoordinates *pc, CartesianCoordinates *pu,
	 CartesianCoordinates *pv, int current_projection, grid *g, int special)
{
  SphericalCoordinates point;
  int grid_index[2], left[2], right[2], bottom, i, j;
  const double dphi=PI/g->height;

  if (pc->z > 0.0) {  /* Cap covers north pole. */
    circle_point(&point, pc, pu, pv, 0.0);
    intensity_index(grid_index, &point, current_projection, g);

    if (debug) {
      fprintf(stderr, "North pole cap: begin %d, end %d\n", 0, grid_index[1]);
      fprintf(stderr, "Size of cap: theta=%f.2\n", point.theta);
    }

    for (i = 0; i < grid_index[1]+1; i++) {

      if (debug) fprintf(stderr, "row %d  ", i);

      intensity_edges(left, right, &point, current_projection, g);
      if (i == 0 && right[0] <= left[0]) right[0] = left[0] + 1;

      if (debug) fprintf(stderr, "columns %d to %d\n", left[0], right[0]);

      for (j = left[0]; j < right[0]; j++) {
	increment_intensity(i,j,g, special);
      }
      point.phi += dphi;
    }
  } else { /* South pole. But u still points towards north pole. */
    circle_point(&point, pc, pu, pv, PI); /* t=PI gets point on other side */
    intensity_index(grid_index, &point, current_projection, g); /* of south pole. */
    bottom = g->height;

    if (debug) fprintf(stderr, "South pole cap: begin %d, end %d\n",
		       grid_index[1]+1, bottom);

    for (i = grid_index[1]+1; i< bottom; i++) {

      if (debug) fprintf(stderr, "row %d  ", i);

      intensity_edges(left, right, &point, current_projection, g);
      if (i == bottom - 1 && right[0] <= left[0]) right[0] = left[0] + 1;

      if (debug) fprintf(stderr, "columns %d to %d\n", left[0], right[0]);

      for(j = left[0]; j < right[0]; j++) {
	increment_intensity(i,j,g, special);
      }
      point.phi += dphi;
    }
  }
}

/*
 * Given spherical coordinates on unit sphere, compute area-preserving
 * sinusoidal 2-d projection. Map is (1,theta,phi) -> (theta*sin(phi), phi).
 * proj[0] in [-Pi, Pi], proj[1] in [0, Pi].
 */
static void
project_sinusoidal(double proj[2], SphericalCoordinates *point)
{
  proj[0]=point->theta*sin(point->phi);
  proj[1]=point->phi;
}

/*
 * Given spherical coordinates on unit sphere, compute "area-preserving"
 * rectangular 2-d projection. Map is (1,theta,phi) -> (theta, Pi/2 * (1-cos(phi))).
 * proj[0] in [-Pi, Pi], proj[1] in [0, Pi] with phi=0 corresponding to
 * y=0.  (dA on sphere = 2/Pi dx dy)
 */
static void
project_cylindrical(double proj[2], SphericalCoordinates *point)
{
  proj[0]=point->theta;
  proj[1]=HALFPI*(1.0-cos(point->phi));
}

/*
 * Given spherical coordinates on unit sphere, compute unprojected
 * rectangular 2-d projection. Map is (1,theta,phi) -> (theta, phi).
 * proj[0] in [-Pi, Pi], proj[1] in [0, Pi].
 */
static void
project_unprojected(double proj[2], SphericalCoordinates *point)
{
  proj[0]=point->theta;
  proj[1]=point->phi;
}

/*
 * Given spherical coordinates on unit sphere, compute spherical
 * globes, two to a rectangle. Map is (1,theta,phi) -> (theta, phi).
 * proj[0] in [-Pi, Pi], proj[1] in [0, Pi].
 */
static void
project_spherical(double proj[2], SphericalCoordinates *point)
{
  if (point->theta < 0) {
    proj[0] = -HALFPI + HALFPI * sin(point->theta + HALFPI) * cos(HALFPI-point->phi);
  } else {
    proj[0] = HALFPI - HALFPI * sin(point->theta + HALFPI) * cos(HALFPI-point->phi);
  }
  proj[1]=HALFPI*(1.0-cos(point->phi));
}


/*
 * Given lat/lon coordinates on sphere, compute area-preserving
 * sinusoidal 2-d projection. Map is (lon, lat) -> (lon*sin(90-lat), 90-lat).
 * proj[0] in [-180, 180], proj[1] in [0,180].
 */
void
project_latlon_sinusoidal(double proj[2], LatLon *point)
{
  proj[0]=point->lon*(cos(DEG_TO_RAD*(point->lat)));
  proj[1]=90.0-point->lat;
}

/*
 * Given lat/lon coordinates on sphere, compute "area-preserving"
 * rectangular 2-d projection. Map is
 * (lon, lat) -> (lon, 90(1-cos(90-lat))).
 * proj[0] in [-180,180], proj[1] in [0,180] with lon=0 corresponding to
 * y=0.  (dA on sphere = 2/Pi dx dy)
 */
void
project_latlon_cylindrical(double proj[2], LatLon *point)
{
  proj[0]=point->lon;
  proj[1]=90.0*(1-sin(DEG_TO_RAD*(point->lat)));
}

/*
 * Given lat/lon coordinates on sphere, compute rectangular
 * unprojected 2-d projection. Map is (lon, lat) -> (lon*sin(90-lat), 90-lat).
 * proj[0] in [-180, 180], proj[1] in [0,180].
 */
void
project_latlon_unprojected(double proj[2], LatLon *point)
{
  proj[0]=point->lon;
  proj[1]=90.0-point->lat;
}

/*
 * Given lat/lon coordinates on sphere, compute spherical globes
 * on 2-d projection. Map is (lon, lat) -> broken into two hemispheres.
 * proj[0] in [-180, 180], proj[1] in [0,180].
 */
void
project_latlon_spherical(double proj[2], LatLon *point)
{
  if (point->lon < 0) {
    proj[0] =-90 + 90.0*sin(DEG_TO_RAD*(point->lon + 90)) * cos(DEG_TO_RAD*(point->lat));
  } else {
    proj[0] = 90 - 90.0*sin(DEG_TO_RAD*(point->lon + 90)) * cos(DEG_TO_RAD*(point->lat));
  }
  proj[1] = 90.0*(1-sin(DEG_TO_RAD*(point->lat)));
}

/*
 * Compute the left and right edge points in the projection map at the same
 * height as the projection of a point given in spherical coords (r, theta,
 * phi).
 *
 * left, right[0] = x (row) position
 * left, right[1] = y (column) position
 */
void
intensity_edges(int left[2], int right[2], SphericalCoordinates *point,
		int current_projection, grid *g)
{
  SphericalCoordinates temp;

  temp.r = point->r;
  temp.theta = PI;
  temp.phi = point->phi;
  intensity_index(right, &temp, current_projection, g);
  left[1]=right[1];
  left[0]=g->width-right[0];
}