File: array.pure.lisp

package info (click to toggle)
sbcl 1%3A0.9.16.0-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 19,960 kB
  • ctags: 16,537
  • sloc: lisp: 231,164; ansic: 19,558; asm: 2,539; sh: 1,925; makefile: 308
file content (211 lines) | stat: -rw-r--r-- 9,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; While most of SBCL is derived from the CMU CL system, the test
;;;; files (like this one) were written from scratch after the fork
;;;; from CMU CL.
;;;;
;;;; This software is in the public domain and is provided with
;;;; absolutely no warranty. See the COPYING and CREDITS files for
;;;; more information.

(in-package :cl-user)

;;; Array initialization has complicated defaulting for :ELEMENT-TYPE,
;;; and both compile-time and run-time logic takes a whack at it.
(let ((testcases '(;; Bug 126, confusion between high-level default string
                   ;; initial element #\SPACE and low-level default array
                   ;; element #\NULL, is gone.
                   (#\null (make-array 11 :element-type 'character) simple-string)
                   (#\space (make-string 11 :initial-element #\space) string)
                   (#\* (make-string 11 :initial-element #\*))
                   (#\null (make-string 11))
                   (#\null (make-string 11 :initial-element #\null))
                   (#\x (make-string 11 :initial-element #\x))
                   ;; And the other tweaks made when fixing bug 126 didn't
                   ;; mess things up too badly either.
                   (0 (make-array 11) simple-vector)
                   (nil (make-array 11 :initial-element nil))
                   (12 (make-array 11 :initial-element 12))
                   (0 (make-array 11 :element-type '(unsigned-byte 4)) (simple-array (unsigned-byte 4) (*)))
                   (12 (make-array 11
                                   :element-type '(unsigned-byte 4)
                                   :initial-element 12)))))
  (dolist (testcase testcases)
    (destructuring-bind (expected-result form &optional type) testcase
      (unless (eql expected-result (aref (eval form) 3))
        (error "expected ~S in EVAL ~S" expected-result form))
      (unless (eql expected-result
                   (aref (funcall (compile nil `(lambda () ,form))) 3))
        (error "expected ~S in FUNCALL COMPILE ~S" expected-result form))
      ;; also do some testing of compilation and verification that
      ;; errors are thrown appropriately.
      (unless (eql expected-result
                   (funcall (compile nil `(lambda () (aref ,form 3)))))
        (error "expected ~S in COMPILED-AREF ~S" expected-result form))
      (when type
        (unless (eql expected-result
                     (funcall (compile nil `(lambda () (let ((x ,form))
                                                         (declare (type ,type x))
                                                         (aref x 3))))))
          (error "expected ~S in COMPILED-DECLARED-AREF ~S" expected-result form)))
      (when (ignore-errors (aref (eval form) 12))
        (error "error not thrown in EVAL ~S" form))
      (when (ignore-errors (aref (funcall (compile nil `(lambda () ,form))) 12))
        (error "error not thrown in FUNCALL COMPILE ~S"))
      (when (ignore-errors (funcall (compile nil `(lambda () (aref ,form 12)))))
        (error "error not thrown in COMPILED-AREF ~S" form))
      (when type
        (when (ignore-errors (funcall
                              (compile nil `(lambda () (let ((x ,form))
                                                         (declare (type ,type x))
                                                         (aref x 12))))))
          (error "error not thrown in COMPILED-DECLARED-AREF ~S" form))))))

;;; On the SPARC, until sbcl-0.7.7.20, there was a bug in array
;;; references for small vector elements (spotted by Raymond Toy); the
;;; bug persisted on the PPC until sbcl-0.7.8.20.
(let (vector)
  (loop for i below 64
        for list = (make-list 64 :initial-element 1)
        do (setf (nth i list) 0)
        do (setf vector (make-array 64 :element-type 'bit
                                       :initial-contents list))
        do (assert (= (funcall
                       (compile nil
                                `(lambda (rmdr)
                                  (declare (type (simple-array bit (*)) rmdr)
                                           (optimize (speed 3) (safety 0)))
                                  (aref rmdr ,i)))
                       vector)
                      0))))

;;; Following refactoring of sequence functions to detect bad type
;;; specifiers, REVERSE was left broken on vectors with fill pointers.
(let ((a (make-array 10
                     :fill-pointer 5
                     :element-type 'character
                     :initial-contents "abcdefghij")))
  (assert (string= (reverse a) "edcba")))

;;; ARRAY-IN-BOUNDS-P should work when given non-INDEXes as its
;;; subscripts (and return NIL, of course)
(let ((a (make-array 10 :fill-pointer 5)))
  (assert (not (array-in-bounds-p a -1)))
  (assert (array-in-bounds-p a 3))
  (assert (array-in-bounds-p a 7))
  (assert (not (array-in-bounds-p a 11)))
  (assert (not (array-in-bounds-p a (1+ most-positive-fixnum)))))

;;; arrays of bits should work:
(let ((a (make-array '(10 10) :element-type 'bit :adjustable t)))
  (setf (bit a 0 0) 1)
  (assert (= (bit a 0 0) 1)))
(let ((a (make-array '(10 10) :element-type 'bit)))
  (setf (sbit a 0 0) 1)
  (assert (= (sbit a 0 0) 1)))

(let ((x (copy-seq #*0011))
      (y (copy-seq #*0101)))
  (assert (equalp (bit-and x y nil) #*0001)))

;;; arrays of NIL should work, FSVO "work".
(let ((a (make-array '(10 10) :element-type 'nil)))
  (assert (= (array-total-size a) 100))
  (assert (equal (array-dimensions a) '(10 10)))
  (assert (eq (array-element-type a) 'nil)))

(assert (eq (upgraded-array-element-type 'nil) 'nil))

(multiple-value-bind (fun warn fail)
    (compile nil '(lambda () (aref (make-array 0) 0)))
  #+nil (assert fail) ; doesn't work, (maybe because ASSERTED-TYPE is NIL?)
  (assert (raises-error? (funcall fun) type-error)))

(multiple-value-bind (fun warn fail)
    (compile nil '(lambda () (aref (make-array 1) 1)))
  (assert fail)
  (assert (raises-error? (funcall fun) type-error)))

(multiple-value-bind (fun warn fail)
    (compile nil '(lambda () (make-array 5 :element-type 'undefined-type)))
  (assert warn))

(flet ((opaque-identity (x) x))
  (declare (notinline opaque-identity))
  ;; we used to have leakage from cross-compilation hosts of the INDEX
  ;; type, which prevented us from actually using all the large array
  ;; dimensions that we promised.  Let's make sure that we can create
  ;; an array with more than 2^24 elements, since that was a symptom
  ;; from the CLISP and OpenMCL hosts.
  (let ((big-array (opaque-identity
                    (make-array (expt 2 26) :element-type 'bit))))
    (assert (= (length big-array) (expt 2 26)))))

;;; Bug reported by Kalle Olavi Niemitalo for CMUCL through Debian BTS
(let ((array (make-array nil :initial-contents nil)))
  (assert (eql (aref array) nil)))

(let ((f (compile nil '(lambda ()
                        (let ((a (make-array '(4)
                                             :element-type 'base-char
                                             :initial-element #\z)))
                          (setf (aref a 0) #\a)
                          (setf (aref a 1) #\b)
                          (setf (aref a 2) #\c)
                          a)))))
  (assert (= (length (funcall f)) 4)))

(let ((x (make-array nil :initial-element 'foo)))
  (adjust-array x nil)
  (assert (eql (aref x) 'foo)))

;;; BUG 315: "no bounds check for access to displaced array"
;;;  reported by Bruno Haible sbcl-devel "various SBCL bugs" from CLISP
;;;  test suite.
(multiple-value-bind (val err)
    (ignore-errors
      (locally (declare (optimize (safety 3) (speed 0)))
        (let* ((x (make-array 10 :fill-pointer 4 :element-type 'character
                              :initial-element #\space :adjustable t))
               (y (make-array 10 :fill-pointer 4 :element-type 'character
                              :displaced-to x)))
          (adjust-array x '(5))
          (char y 5))))
  (assert (and (not val) (typep err 'sb-kernel:displaced-to-array-too-small-error))))

;;; MISC.527: bit-vector bitwise operations used LENGTH to get a size
;;; of a vector
(flet ((bit-vector-equal (v1 v2)
         (and (bit-vector-p v1) (bit-vector-p v2)
              (equal (array-dimension v1 0) (array-dimension v2 0))
              (loop for i below (array-dimension v1 0)
                    always (eql (aref v1 i) (aref v2 i))))))
  (let* ((length 1024)
         (v1 (make-array length :element-type 'bit :fill-pointer 0))
         (v2 (make-array length :element-type 'bit :fill-pointer 1)))
    (loop for i from 0 below length
          for x1 in '#1=(0 0 1 1 . #1#)
          and x2 in '#2=(0 1 0 1 . #2#)
          do (setf (aref v1 i) x1)
          do (setf (aref v2 i) x2))
    (loop for (bf lf) in '((bit-and logand)
                           (bit-andc1 logandc1)
                           (bit-andc2 logandc2)
                           (bit-eqv logeqv)
                           (bit-ior logior)
                           (bit-nand lognand)
                           (bit-nor lognor)
                           (bit-orc1 logorc1)
                           (bit-orc2 logorc2)
                           (bit-xor logxor)
                           ((lambda (x y) (bit-not x)) #.(lambda (x y) (lognot x))))
          for fun = (compile nil `(lambda (v)
                                    (declare (type (array bit (*)) v))
                                    (declare (optimize (speed 3) (safety 0)))
                                    (,bf v ,v2)))
          for r1 = (funcall fun v1)
          and r2 = (coerce (loop for i below length
                                 collect (logand 1 (funcall lf (aref v1 i) (aref v2 i))))
                           'bit-vector)
          do (assert (bit-vector-equal r1 r2)))))