1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
;;;; X86-64-specific runtime stuff
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB-VM")
(defun machine-type ()
"Return a string describing the type of the local machine."
"X86-64")
#+(or darwin linux openbsd win32 sunos (and freebsd x86-64))
(define-alien-routine ("os_context_float_register_addr" context-float-register-addr)
(* unsigned) (context (* os-context-t)) (index int))
;;; This is like CONTEXT-REGISTER, but returns the value of a float
;;; register. FORMAT is the type of float to return.
(defun context-float-register (context index format)
(declare (ignorable context index))
#-(or darwin linux openbsd win32 sunos (and freebsd x86-64))
(progn
(warn "stub CONTEXT-FLOAT-REGISTER")
(coerce 0 format))
#+(or darwin linux openbsd win32 sunos (and freebsd x86-64))
(let ((sap (alien-sap (context-float-register-addr context index))))
(ecase format
(single-float
(sap-ref-single sap 0))
(double-float
(sap-ref-double sap 0))
(complex-single-float
(complex (sap-ref-single sap 0)
(sap-ref-single sap 4)))
(complex-double-float
(complex (sap-ref-double sap 0)
(sap-ref-double sap 8)))
#+sb-simd-pack
(simd-pack-int
(%make-simd-pack-ub64
(sap-ref-64 sap 0)
(sap-ref-64 sap 8)))
#+sb-simd-pack
(simd-pack-single
(%make-simd-pack-single
(sap-ref-single sap 0)
(sap-ref-single sap 4)
(sap-ref-single sap 8)
(sap-ref-single sap 12)))
#+sb-simd-pack
(simd-pack-double
(%make-simd-pack-double
(sap-ref-double sap 0)
(sap-ref-double sap 8)))
#+sb-simd-pack-256
(simd-pack-256-int
(%make-simd-pack-256-ub64
(sap-ref-64 sap 0)
(sap-ref-64 sap 8)
(sap-ref-64 sap 16)
(sap-ref-64 sap 24)))
#+sb-simd-pack-256
(simd-pack-256-single
(%make-simd-pack-256-single
(sap-ref-single sap 0)
(sap-ref-single sap 4)
(sap-ref-single sap 8)
(sap-ref-single sap 12)
(sap-ref-single sap 16)
(sap-ref-single sap 20)
(sap-ref-single sap 24)
(sap-ref-single sap 28)))
#+sb-simd-pack-256
(simd-pack-256-double
(%make-simd-pack-256-double
(sap-ref-double sap 0)
(sap-ref-double sap 8)
(sap-ref-double sap 16)
(sap-ref-double sap 24))))))
(defun %set-context-float-register (context index format value)
(declare (ignorable context index format))
#-(or linux win32)
(progn
(warn "stub %SET-CONTEXT-FLOAT-REGISTER")
value)
#+(or linux win32)
(let ((sap (alien-sap (context-float-register-addr context index))))
(ecase format
(single-float
(setf (sap-ref-single sap 0) value))
(double-float
(setf (sap-ref-double sap 0) value))
(complex-single-float
(locally
(declare (type (complex single-float) value))
(setf (sap-ref-single sap 0) (realpart value)
(sap-ref-single sap 4) (imagpart value))))
(complex-double-float
(locally
(declare (type (complex double-float) value))
(setf (sap-ref-double sap 0) (realpart value)
(sap-ref-double sap 8) (imagpart value))))
#+sb-simd-pack
(simd-pack-int
(multiple-value-bind (a b) (%simd-pack-ub64s value)
(setf (sap-ref-64 sap 0) a
(sap-ref-64 sap 8) b)))
#+sb-simd-pack
(simd-pack-single
(multiple-value-bind (a b c d) (%simd-pack-singles value)
(setf (sap-ref-single sap 0) a
(sap-ref-single sap 4) b
(sap-ref-single sap 8) c
(sap-ref-single sap 12) d)))
#+sb-simd-pack
(simd-pack-double
(multiple-value-bind (a b) (%simd-pack-doubles value)
(setf (sap-ref-double sap 0) a
(sap-ref-double sap 8) b)))
#+sb-simd-pack-256
(simd-pack-256-int
(multiple-value-bind (a b c d) (%simd-pack-256-ub64s value)
(setf (sap-ref-64 sap 0) a
(sap-ref-64 sap 8) b
(sap-ref-64 sap 16) c
(sap-ref-64 sap 24) d)))
#+sb-simd-pack-256
(simd-pack-256-single
(multiple-value-bind (a b c d e f g h) (%simd-pack-256-singles value)
(setf (sap-ref-single sap 0) a
(sap-ref-single sap 4) b
(sap-ref-single sap 8) c
(sap-ref-single sap 12) d
(sap-ref-single sap 16) e
(sap-ref-single sap 20) f
(sap-ref-single sap 24) g
(sap-ref-single sap 28) h)))
#+sb-simd-pack-256
(simd-pack-256-double
(multiple-value-bind (a b c d) (%simd-pack-256-doubles value)
(setf (sap-ref-double sap 0) a
(sap-ref-double sap 8) b
(sap-ref-double sap 16) c
(sap-ref-double sap 24) d))))))
;;; Given a signal context, return the floating point modes word in
;;; the same format as returned by FLOATING-POINT-MODES.
#-linux
(defun context-floating-point-modes (context)
(declare (ignore context)) ; stub!
(warn "stub CONTEXT-FLOATING-POINT-MODES")
0)
#+linux
(define-alien-routine ("os_context_fp_control" context-floating-point-modes)
(unsigned 32)
(context (* os-context-t)))
(define-alien-routine
("arch_get_fp_modes" floating-point-modes) (unsigned 32))
(define-alien-routine
("arch_set_fp_modes" %floating-point-modes-setter) void (fp (unsigned 32)))
(defun (setf floating-point-modes) (val) (%floating-point-modes-setter val))
;;;; INTERNAL-ERROR-ARGS
;;; Given a (POSIX) signal context, extract the internal error
;;; arguments from the instruction stream.
(defun internal-error-args (context)
(declare (type (alien (* os-context-t)) context))
(let* ((pc (context-pc context))
(trap-number (sap-ref-8 pc 0)))
(declare (type system-area-pointer pc))
(cond ((= trap-number invalid-arg-count-trap)
(values #.(error-number-or-lose 'invalid-arg-count-error)
'(#.arg-count-sc)))
#+linux
((= trap-number uninitialized-load-trap)
(values #.(error-number-or-lose 'uninitialized-memory-error)
(locally
(declare (optimize (safety 0)))
(let* ((data (sap-ref-8 pc 1)) ; encodes dst register and size
(value (sb-vm:context-register context (ash data -2)))
(nbytes (ash 1 (logand data #b11)))
;; EMIT-SAP-REF wires the EA to a predetermined register,
;; which now points to the shadow space, not the user memory.
(ea (logxor (sb-vm:context-register context msan-temp-reg-number)
msan-mem-to-shadow-xor-const)))
`(:raw ,ea ,nbytes ,value)))))
(t
(sb-kernel::decode-internal-error-args (sap+ pc 1) trap-number)))))
(defun write-funinstance-prologue (fin)
;; Encode: MOV RAX,[RIP+9] / JMP [RAX-3] / NOP / MOV EBX, #x0
;; and the #x0 is replaced with a hash code.
(declare (ignorable fin))
#-immobile-space (return-from write-funinstance-prologue)
(with-pinned-objects (fin)
(let* ((sap (sap+ (int-sap (get-lisp-obj-address fin))
(- (ash 2 word-shift) fun-pointer-lowtag))))
;; Scavenging these words when you shouldn't is actually harmless
;; because by a stroke of luck, they all look fixnum-tagged.
(setf (sap-ref-sap sap -8) sap
(sap-ref-word sap 0) #xFF00000009058B48
(sap-ref-word sap 8) #x00000000BB90FD60)))
(update-dynamic-space-code-tree fin)
fin)
#+immobile-space
(defun alloc-immobile-fdefn ()
(alloc-immobile-fixedobj fdefn-size
(logior (ash undefined-fdefn-header 16)
fdefn-widetag))) ; word 0
#+immobile-code
(progn
(defconstant trampoline-entry-offset n-word-bytes)
(defun make-simplifying-trampoline (fun)
;; 'alloc' is compiled after this file so we don't see the derived type.
;; But slam found a conflict on recompile.
(let ((code (truly-the (values code-component (integer 0) &optional)
(allocate-code-object :dynamic 3 24)))) ; KLUDGE
(setf (%code-debug-info code) fun)
(with-pinned-objects (code)
(let ((sap (sap+ (code-instructions code) trampoline-entry-offset))
(ea (+ (logandc2 (get-lisp-obj-address code) lowtag-mask)
(ash code-debug-info-slot word-shift))))
(setf (sap-ref-32 sap 0) #x058B48 ; REX MOV [RIP-n]
(signed-sap-ref-32 sap 3) (- ea (+ (sap-int sap) 7)); disp
(sap-ref-32 sap 7) #xFD60FF))) ; JMP [RAX-3]
;; Verify that the jump table size reads as 0.
(aver (zerop (code-jump-table-words code)))
;; It is critical that there be a trailing 'uint16' of 0 in this object
;; so that CODE-N-ENTRIES reports 0. By luck, there is exactly enough
;; room in the object to hold two 0 bytes. It would be easy enough to enlarge
;; by 2 words if it became necessary. The assertions makes sure we stay ok.
(aver (zerop (code-n-entries code)))
code))
(defun fdefn-has-static-callers (fdefn)
(declare (type fdefn fdefn))
(with-pinned-objects (fdefn)
(logbitp 7 (sap-ref-8 (int-sap (get-lisp-obj-address fdefn))
(- 1 other-pointer-lowtag)))))
(defun set-fdefn-has-static-callers (fdefn newval)
(declare (type fdefn fdefn) (type bit newval))
(if (= newval 0)
(%primitive unset-fdefn-has-static-callers fdefn)
(%primitive set-fdefn-has-static-callers fdefn))
fdefn)
(defun %set-fdefn-fun (fdefn fun)
(declare (type fdefn fdefn) (type function fun)
(values function))
(when (fdefn-has-static-callers fdefn)
(remove-static-links fdefn))
(let ((trampoline (when (closurep fun)
(make-simplifying-trampoline fun)))) ; a newly made CODE object
(with-pinned-objects (fdefn trampoline fun)
(let* ((jmp-target
(if trampoline
;; Jump right to code-instructions + N. There's no simple-fun.
(sap-int (sap+ (code-instructions trampoline)
trampoline-entry-offset))
;; CLOSURE-CALLEE accesses the self pointer of a funcallable
;; instance w/ builtin trampoline, or a simple-fun.
;; But the result is shifted by N-FIXNUM-TAG-BITS because
;; CELL-REF yields a descriptor-reg, not an unsigned-reg.
(get-lisp-obj-address (%closure-callee fun)))))
(%primitive sb-vm::set-direct-callable-fdefn-fun fdefn fun jmp-target))))
fun)
) ; end PROGN
;;; Find an immobile FDEFN or FUNCTION given an interior pointer to it.
#+immobile-space
(defun find-called-object (address)
(let ((obj (alien-funcall (extern-alien "search_all_gc_spaces"
(function unsigned unsigned))
address)))
(unless (eql obj 0)
(case (sap-ref-8 (int-sap obj) 0)
(#.code-header-widetag
(%simple-fun-from-entrypoint
(make-lisp-obj (logior obj other-pointer-lowtag))
address))
(#.fdefn-widetag
(make-lisp-obj (logior obj other-pointer-lowtag)))
(#.funcallable-instance-widetag
(make-lisp-obj (logior obj fun-pointer-lowtag)))))))
;;; Compute the PC that FDEFN will jump to when called.
#+immobile-code
(defun fdefn-raw-addr (fdefn)
(sap-ref-word (int-sap (get-lisp-obj-address fdefn))
(- (ash fdefn-raw-addr-slot word-shift) other-pointer-lowtag)))
;;; Undo the effects of XEP-ALLOCATE-FRAME
;;; and point PC to FUNCTION
(defun context-call-function (context function &optional arg-count)
(with-pinned-objects (function)
(let ((rsp (decf (context-register context rsp-offset) n-word-bytes))
(rbp (context-register context rbp-offset))
(fun-addr (get-lisp-obj-address function)))
(setf (sap-ref-word (int-sap rsp) 0)
(sap-ref-word (int-sap rbp) 8))
(when arg-count
(setf (context-register context rcx-offset)
(get-lisp-obj-address arg-count)))
(setf (context-register context rax-offset) fun-addr)
(set-context-pc context (sap-ref-word (int-sap fun-addr)
(- (ash simple-fun-self-slot word-shift)
fun-pointer-lowtag))))))
(defun singly-occurs-p (thing things &aux (len (length things)))
;; Return T if THING occurs exactly once in vector THINGS,
;; assuming that it occurs at all.
(declare (simple-vector things))
(dotimes (i len)
(when (eq (svref things i) thing)
;; re-using I as the index is OK because we leave the outer loop
;; after this.
(return (loop (cond ((>= (incf i) len) (return t))
((eq thing (svref things i)) (return nil))))))))
(define-load-time-global *static-linker-lock* (sb-thread:make-mutex :name "static linker"))
(define-load-time-global *never-statically-link* '(find-package))
;;; Remove calls via fdefns from CODE. This is called after compiling
;;; to memory, or when saving a core.
;;; Do not replace globally notinline functions, because notinline has
;;; an extra connotation of ensuring that replacement of the function
;;; under that name always works. It usually works to replace a statically
;;; linked function, but with a caveat: un-statically-linking requires calling
;;; MAP-OBJECTS-IN-RANGE, which is unreliable in the presence of
;;; multiple threads. Unfortunately, some users dangerously redefine
;;; builtin functions, and moreover, while there are multiple threads.
(defun statically-link-code-obj (code fixups &optional observable-fdefns)
(declare (ignorable code fixups observable-fdefns))
#+immobile-code
(binding* (((fdefns-start fdefns-count) (code-header-fdefn-range code))
(replacements (make-array fdefns-count :initial-element nil))
(ambiguous (make-array fdefns-count :initial-element 0 :element-type 'bit))
(any-replacements nil)
(any-ambiguous nil))
;; For each fdefn, decide two things:
;; * whether the fdefn can be replaced by its function - possible only when
;; that function is in immobile space and needs no trampoline.
;; * whether the replacement creates ambiguitity - if #'F and #'G are the same
;; function, then substituting that function in for the fdefn of F and G
;; requires storing locations at which replacement was done
(dotimes (i fdefns-count)
(let* ((fdefn (code-header-ref code (+ fdefns-start i)))
(fun (when (fdefn-p fdefn) (fdefn-fun fdefn))))
(when (and (immobile-space-obj-p fun)
(not (closurep fun))
(not (member (fdefn-name fdefn) *never-statically-link* :test 'equal))
(neq (info :function :inlinep (fdefn-name fdefn)) 'notinline))
(setf any-replacements t (aref replacements i) fun))))
(dotimes (i fdefns-count)
(when (and (aref replacements i)
(not (singly-occurs-p (aref replacements i) replacements)))
(setf any-ambiguous t (bit ambiguous i) 1)))
(unless any-replacements
(return-from statically-link-code-obj))
;; Map each fixup to an index in REPLACEMENTS (which currently holds functions,
;; not fdefns, so we have to scan the code header).
;; This can be done outside the lock
(flet ((index-of (fdefn)
(dotimes (i fdefns-count)
(when (eq fdefn (code-header-ref code (+ fdefns-start i)))
(return i)))))
(setq fixups (mapcar (lambda (fixup) ; = (offset . #<fdefn>)
(cons (index-of (cdr fixup)) (car fixup)))
fixups)))
(let ((insts (code-instructions code)))
;; One final check: if any of the fixed-up instructions is "MOV EAX, #xNNNN"
;; instead of a CALL or JMP, we can't fixup that particular fdefn for any
;; of its call sites. (They should all use MOV if any one does).
;; This happens when *COMPILE-TO-MEMORY-SPACE* is set to :AUTOMATIC.
;; In that case we don't know that the code will be within an imm32 of
;; the target address, because the code might have gone into dynamic space.
(dolist (fixup fixups)
(binding* ((fdefn-index (car fixup) :exit-if-null)
(offset (cdr fixup)))
(when (and (aref replacements fdefn-index)
(not (eql (logior (sap-ref-8 insts (1- offset)) 1) #xE9)))
(setf (aref replacements fdefn-index) nil))))
(let ((stored-locs (if any-ambiguous
(make-array fdefns-count :initial-element nil))))
(with-system-mutex (*static-linker-lock*)
(dolist (fixup fixups)
(binding* ((fdefn-index (car fixup) :exit-if-null)
(offset (cdr fixup))
(fdefn (code-header-ref code (+ fdefns-start fdefn-index)))
(fun (aref replacements fdefn-index)))
(when (and fun (/= (bit ambiguous fdefn-index) 1))
;; Set the statically-linked flag
(sb-vm::set-fdefn-has-static-callers fdefn 1)
(when (= (bit ambiguous fdefn-index) 1)
(push offset (aref stored-locs fdefn-index)))
;; Change the machine instruction
;; %CLOSURE-CALLEE reads the entry addresss word of any
;; kind of function, but as if it were a tagged fixnum.
(let ((entry (descriptor-sap (%closure-callee fun))))
(setf (signed-sap-ref-32 insts offset)
(sap- entry (sap+ insts (+ offset 4))))))))
;; Replace ambiguous elements of the code header while still holding the lock
#+statically-link-if-ambiguous ; never enabled
(dotimes (i fdefns-count)
(when (= (bit ambiguous i) 1)
(let ((wordindex (+ fdefns-start i))
(locs (aref stored-locs i)))
(setf (code-header-ref code wordindex)
(cons (code-header-ref code wordindex) locs)))))))))
code)
(sb-c::when-vop-existsp (:translate sb-c::unsigned+)
(defconstant cf-bit 0)
(defconstant sf-bit 7)
(defconstant of-bit 11)
(defun context-overflow-carry-flags (context)
(let ((flags (context-flags context)))
(values (logbitp of-bit flags)
(logbitp cf-bit flags)))))
(def-cpu-feature :avx2
(plusp (sb-alien:extern-alien "avx2_supported" int)))
|