1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
package examples
object typeinf {
trait Term {}
case class Var(x: String) extends Term {
override def toString() = x
}
case class Lam(x: String, e: Term) extends Term {
override def toString() = "(\\" + x + "." + e + ")"
}
case class App(f: Term, e: Term) extends Term {
override def toString() = "(" + f + " " + e + ")"
}
case class Let(x: String, e: Term, f: Term) extends Term {
override def toString() = "let " + x + " = " + e + " in " + f
}
sealed trait Type {}
case class Tyvar(a: String) extends Type {
override def toString() = a
}
case class Arrow(t1: Type, t2: Type) extends Type {
override def toString() = "(" + t1 + "->" + t2 + ")"
}
case class Tycon(k: String, ts: List[Type]) extends Type {
override def toString() =
k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "]"))
}
object typeInfer {
private var n: Int = 0
def newTyvar(): Type = { n += 1; Tyvar("a" + n) }
trait Subst extends Function1[Type, Type] {
def lookup(x: Tyvar): Type
def apply(t: Type): Type = t match {
case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u)
case Arrow(t1, t2) => Arrow(apply(t1), apply(t2))
case Tycon(k, ts) => Tycon(k, ts map apply)
}
def extend(x: Tyvar, t: Type) = new Subst {
def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y)
}
}
val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }
case class TypeScheme(tyvars: List[Tyvar], tpe: Type) {
def newInstance: Type =
(emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe)
}
type Env = List[Pair[String, TypeScheme]]
def lookup(env: Env, x: String): TypeScheme = env match {
case List() => null
case Pair(y, t) :: env1 => if (x == y) t else lookup(env1, x)
}
def gen(env: Env, t: Type): TypeScheme =
TypeScheme(tyvars(t) diff tyvars(env), t)
def tyvars(t: Type): List[Tyvar] = t match {
case tv @ Tyvar(a) => List(tv)
case Arrow(t1, t2) => tyvars(t1) union tyvars(t2)
case Tycon(k, ts) => (List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t))
}
def tyvars(ts: TypeScheme): List[Tyvar] =
tyvars(ts.tpe) diff ts.tyvars;
def tyvars(env: Env): List[Tyvar] =
(List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2))
def mgu(t: Type, u: Type, s: Subst): Subst = Pair(s(t), s(u)) match {
case Pair(Tyvar(a), Tyvar(b)) if (a == b) =>
s
case Pair(Tyvar(a), _) if !(tyvars(u) contains a) =>
s.extend(Tyvar(a), u)
case Pair(_, Tyvar(a)) =>
mgu(u, t, s)
case Pair(Arrow(t1, t2), Arrow(u1, u2)) =>
mgu(t1, u1, mgu(t2, u2, s))
case Pair(Tycon(k1, ts), Tycon(k2, us)) if (k1 == k2) =>
(s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))
case _ =>
throw new TypeError("cannot unify " + s(t) + " with " + s(u))
}
case class TypeError(s: String) extends Exception(s) {}
def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {
current = e
e match {
case Var(x) =>
val u = lookup(env, x)
if (u == null) throw new TypeError("undefined: " + x)
else mgu(u.newInstance, t, s)
case Lam(x, e1) =>
val a, b = newTyvar()
val s1 = mgu(t, Arrow(a, b), s)
val env1 = Pair(x, TypeScheme(List(), a)) :: env
tp(env1, e1, b, s1)
case App(e1, e2) =>
val a = newTyvar()
val s1 = tp(env, e1, Arrow(a, t), s)
tp(env, e2, a, s1)
case Let(x, e1, e2) =>
val a = newTyvar()
val s1 = tp(env, e1, a, s)
tp(Pair(x, gen(env, s1(a))) :: env, e2, t, s1)
}
}
var current: Term = null
def typeOf(env: Env, e: Term): Type = {
val a = newTyvar()
tp(env, e, a, emptySubst)(a)
}
}
object predefined {
val booleanType = Tycon("Boolean", List())
val intType = Tycon("Int", List())
def listType(t: Type) = Tycon("List", List(t))
private def gen(t: Type): typeInfer.TypeScheme = typeInfer.gen(List(), t)
private val a = typeInfer.newTyvar()
val env = List(
/*
Pair("true", gen(booleanType)),
Pair("false", gen(booleanType)),
Pair("if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))),
Pair("zero", gen(intType)),
Pair("succ", gen(Arrow(intType, intType))),
Pair("nil", gen(listType(a))),
Pair("cons", gen(Arrow(a, Arrow(listType(a), listType(a))))),
Pair("isEmpty", gen(Arrow(listType(a), booleanType))),
Pair("head", gen(Arrow(listType(a), a))),
Pair("tail", gen(Arrow(listType(a), listType(a)))),
*/
Pair("fix", gen(Arrow(Arrow(a, a), a)))
)
}
trait MiniMLParsers extends CharParsers {
/** whitespace */
def whitespace = rep{chr(' ') ||| chr('\t') ||| chr('\n')}
/** A given character, possible preceded by whitespace */
def wschr(ch: char) = whitespace &&& chr(ch)
def isLetter = (c: char) => Character.isLetter(c)
def isLetterOrDigit: char => boolean = Character.isLetterOrDigit
/** identifiers or keywords */
def id: Parser[String] =
for (
c: char <- rep(chr(' ')) &&& chr(isLetter);
cs: List[char] <- rep(chr(isLetterOrDigit))
) yield (c :: cs).mkString("", "", "")
/** Non-keyword identifiers */
def ident: Parser[String] =
for (s <- id if s != "let" && s != "in") yield s
/** term = '\' ident '.' term | term1 {term1} | let ident "=" term in term */
def term: Parser[Term] = (
( for (
_ <- wschr('\\');
x <- ident;
_ <- wschr('.');
t <- term)
yield Lam(x, t): Term )
|||
( for (
letid <- id if letid == "let";
x <- ident;
_ <- wschr('=');
t <- term;
inid <- id; if inid == "in";
c <- term)
yield Let(x, t, c) )
|||
( for (
t <- term1;
ts <- rep(term1))
yield (t /: ts)((f, arg) => App(f, arg)) )
)
/** term1 = ident | '(' term ')' */
def term1: Parser[Term] = (
( for (s <- ident)
yield Var(s): Term )
|||
( for (
_ <- wschr('(');
t <- term;
_ <- wschr(')'))
yield t )
)
/** all = term ';' */
def all: Parser[Term] =
for (
t <- term;
_ <- wschr(';'))
yield t
}
class ParseString(s: String) extends Parsers {
type inputType = int
val input = 0
def any = new Parser[char] {
def apply(in: int): Parser[char]#Result =
if (in < s.length()) Some(Pair(s charAt in, in + 1)) else None
}
}
def showType(e: Term): String =
try {
typeInfer.typeOf(predefined.env, e).toString()
}
catch {
case typeInfer.TypeError(msg) =>
"\n cannot type: " + typeInfer.current +
"\n reason: " + msg
}
def main(args: Array[String]) {
Console.println(
if (args.length == 1) {
val ps = new ParseString(args(0)) with MiniMLParsers
ps.all(ps.input) match {
case Some(Pair(term, _)) =>
"" + term + ": " + showType(term)
case None =>
"syntax error"
}
}
else
"usage: java examples.typeinf <expr-string>"
)
}
}
|