1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
import org.scalacheck._
import Prop._
import Gen._
/*
Properties of a Red & Black Tree:
A node is either red or black.
The root is black. (This rule is used in some definitions and not others. Since the
root can always be changed from red to black but not necessarily vice-versa this
rule has little effect on analysis.)
All leaves are black.
Both children of every red node are black.
Every simple path from a given node to any of its descendant leaves contains the same number of black nodes.
*/
abstract class RedBlackTest extends Properties("RedBlack") {
object RedBlackTest extends scala.collection.immutable.RedBlack[Int] {
def isSmaller(x: Int, y: Int) = x < y
}
import RedBlackTest._
def rootIsBlack[A](t: Tree[A]) = t.isBlack
def areAllLeavesBlack[A](t: Tree[A]): Boolean = t match {
case Empty => t.isBlack
case ne: NonEmpty[_] => List(ne.left, ne.right) forall areAllLeavesBlack
}
def areRedNodeChildrenBlack[A](t: Tree[A]): Boolean = t match {
case RedTree(_, _, left, right) => List(left, right) forall (t => t.isBlack && areRedNodeChildrenBlack(t))
case BlackTree(_, _, left, right) => List(left, right) forall areRedNodeChildrenBlack
case Empty => true
}
def blackNodesToLeaves[A](t: Tree[A]): List[Int] = t match {
case Empty => List(1)
case BlackTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves map (_ + 1)
case RedTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves
}
def areBlackNodesToLeavesEqual[A](t: Tree[A]): Boolean = t match {
case Empty => true
case ne: NonEmpty[_] =>
(
blackNodesToLeaves(ne).removeDuplicates.size == 1
&& areBlackNodesToLeavesEqual(ne.left)
&& areBlackNodesToLeavesEqual(ne.right)
)
}
def orderIsPreserved[A](t: Tree[A]): Boolean = t match {
case Empty => true
case ne: NonEmpty[_] =>
(
(ne.left.iterator map (_._1) forall (isSmaller(_, ne.key)))
&& (ne.right.iterator map (_._1) forall (isSmaller(ne.key, _)))
&& (List(ne.left, ne.right) forall orderIsPreserved)
)
}
def setup(l: List[Int], invariant: Tree[Unit] => Boolean): (Boolean, Tree[Unit])
def listNoRepetitions(size: Int) = for {
s <- Gen.choose(1, size)
l <- Gen.listOfN(size, Gen.choose(0, Int.MaxValue)) suchThat (l => l.size == l.removeDuplicates.size)
} yield l
def listFewRepetitions(size: Int) = for {
s <- Gen.choose(1, size)
l <- Gen.listOfN(s, Gen.choose(0, size * 4)) suchThat (l => l.size != l.removeDuplicates.size)
} yield l
def listManyRepetitions(size: Int) = for {
s <- Gen.choose(1, size)
l <- Gen.listOfN(s, Gen.choose(0, size)) suchThat (l => l.size != l.removeDuplicates.size)
} yield l
def listEvenRepetitions(size: Int) = listFewRepetitions(size) map (x =>
scala.util.Random.shuffle(x zip x flatMap { case (a, b) => List(a, b) })
)
// Arbitrarily weighted list distribution types
val seqType: Gen[Int => Gen[List[Int]]]
def myGen(sized: Int) = for {
size <- Gen.choose(0, sized)
seq <- seqType
list <- seq(size)
} yield list
property("root is black") = forAll(myGen(10)) { l =>
setup(l, rootIsBlack)._1 :| setup(l, rootIsBlack)._2.toString
}
property("all leaves are black") = forAll(myGen(50)) { l =>
setup(l, areAllLeavesBlack)._1 :| setup(l, areAllLeavesBlack)._2.toString
}
property("children of red nodes are black") = forAll(myGen(50)) { l =>
setup(l, areRedNodeChildrenBlack)._1 :| setup(l, areRedNodeChildrenBlack)._2.toString
}
property("Every path from a node to its descendant leaves contains the same number of black nodes") = forAll(myGen(50)) { l =>
setup(l, areBlackNodesToLeavesEqual)._1 :| setup(l, areBlackNodesToLeavesEqual)._2.toString
}
property("Ordering of keys is preserved") = forAll(myGen(50)) { l =>
setup(l, orderIsPreserved)._1 :| setup(l, orderIsPreserved)._2.toString
}
}
object TestInsertion extends RedBlackTest {
import RedBlackTest._
override val seqType = Gen.frequency(
(1, listNoRepetitions _),
(1, listManyRepetitions _)
)
property("update adds elements") = forAll(myGen(50)) { l =>
val tree = l.foldLeft(Empty: Tree[Unit])((acc, n) => acc update (n, ()))
forAll(Gen.pick(1, l)) ( n => !(tree lookup n.head isEmpty) :| "Tree: "+tree+" N: "+n.head )
}
override def setup(l: List[Int], invariant: Tree[Unit] => Boolean) = l.foldLeft((true, Empty: Tree[Unit])) {
case ((true, acc), n) =>
val newRoot = acc update (n, ())
(invariant(newRoot), newRoot)
case (failed, _) => failed
}
}
object TestDeletion extends RedBlackTest {
import RedBlackTest._
override val seqType = Gen.frequency(
(2, listFewRepetitions _),
(3, listManyRepetitions _),
(1, listEvenRepetitions _)
)
property("delete removes elements") = forAll(myGen(50)) { l =>
val tree = l.foldLeft(Empty: Tree[Unit])((acc, n) => acc update (n, ()))
forAll(Gen.choose(1, l.size)) { numberOfElementsToRemove =>
forAll(Gen.pick(numberOfElementsToRemove, l)) { elementsToRemove =>
val newTree = elementsToRemove.foldLeft(tree)((acc, n) => acc delete n)
(elementsToRemove forall (n => newTree lookup n isEmpty)) :| "Tree: "+tree+"New Tree: "+newTree+" Elements to Remove: "+elementsToRemove
}
}
}
override def setup(l: List[Int], invariant: Tree[Unit] => Boolean) = l.foldLeft((true, Empty: Tree[Unit])) {
case ((true, acc), n) =>
val newRoot = if (acc lookup n isEmpty) acc update (n, ()) else acc delete n
(invariant(newRoot), newRoot)
case (failed, _) => failed
}
}
object Test extends Properties("RedBlack") {
include(TestInsertion)
include(TestDeletion)
}
|