File: footnode.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (849 lines) | stat: -rw-r--r-- 9,054 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Footnotes</TITLE>
<META NAME="description" CONTENT="Footnotes">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
<DL> <DT><A NAME="779">...output</A><DD>This example program computes the relative machine precision 
which causes, on some systems, the IEEE floating-point exception 
flags to be raised. This may result in the printing of a warning
message. This is normal.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="782">...output</A><DD>This example program computes the relative machine precision
which causes, on some systems, the IEEE floating-point exception
flags to be raised. This may result in the printing of a warning
message. This is normal.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2653">...output),</A><DD>(Local input or local
       output) means that the argument may be either a local input 
       argument or a local output argument, depending on the values
       of other arguments; for example, in the PxyySVX driver routines,
       some arguments are used either as local output arguments to return
       details of a factorization, or as local input arguments to supply
       details of a previously computed factorization.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2654">...input),</A><DD>(local or global input) is used
       to describe the length of the workspace arguments, e.g., LWORK,
       where the value can be local input specifying the size of the
       local WORK array, or global input LWORK=-1 specifying a global
       query for the amount of workspace required.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3346">...input)</A><DD>(local or global input) is used
       to describe the length of the workspace arguments, e.g., LWORK,
       where the value can be local input specifying the size of the
       local WORK array, or global input LWORK=-1 specifying a global
       query for the amount of workspace required.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3563">...size</A><DD>The block size must be large enough 
that the local matrix multiply is efficient.  A block size of 64
suffices for most
computers that have only one processor per node.  Computers that
have multiple shared-memory processors on each node may require a larger
block size.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3796">...(DSSL)</A><DD> Dakota Scientific Software, Inc., 501 East Saint Joseph
Street, Rapid City, SD  57701-3995  USA, (605) 394-2471
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3846">...(DSSL)</A><DD> Dakota Scientific Software, Inc., 501 East Saint Joseph
Street, Rapid City, SD  57701-3995  USA, (605) 394-2471
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3903">...PSLAHQR/PDLAHQR.</A><DD>Strictly
       speaking, PSLAHQR/PDLAHQR is an auxiliary routine
       for computing the eigenvalues and optionally the
       corresponding eigenvectors of the more general case
       of nonsymmetric matrices.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="7993">...computer.</A><DD>The ScaLAPACK sample
timer page (contained within the ScaLAPACK examples
directory on <EM>netlib</EM> and on the CD-ROM) has a BLACS port
of the message-passing program and instructions for
building the BLAS timing program.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8006">...PxSYEVX.</A><DD>See section&nbsp;<A HREF="node42.html#subsecnaming">3.1.3</A> for explanation 
of the naming convention used for ScaLAPACK routines.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8007">...'E'))</A><DD>ICTXT refers to the BLACS CONTEXT parameter.
Refer to section&nbsp;<A HREF="node71.html#secblacscontext">4.1.2</A> for further details.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="4433">...digit,</A><DD>This is the
case on the Cray C90 and its predecessors and emulators.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="4440">...PCs,</A><DD>Important machines that do not implement the IEEE standard
include the CRAY X-MP, CRAY Y-MP, CRAY 2, CRAY C90, IBM 370, DEC Vax,
and their emulators.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8008">...[#lawn112##1#].</A><DD>Running 
either machine in non-default mode to avoid this problem, either so that
the IBM RS/6000 flushes denormalized numbers to zero or so that the DEC Alpha 
handles denormalized numbers correctly by doing gradual underflow, slows
down the machine significantly [<A HREF="node189.html#demmelli93">42</A>].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5012">....</A><DD>
Sometimes our algorithms satisfy only 535#535 where both
532#532 and 536#536 are small. This does not significantly change the following
analysis.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5013">...small.</A><DD>More generally,
we need only Lipschitz continuity of <I>f</I> and may use the Lipschitz
constant in place of <I>f</I>' in deriving error bounds.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5039">...exist).</A><DD>This is
a different use of the term ill-posed from that used in other contexts. For
example, to be well-posed (not ill-posed) in the sense of Hadamard,
it is sufficient for <I>f</I> to be continuous, 
whereas we require Lipschitz continuity.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8055">...described</A><DD>There are some
caveats to this statement. When computing the inverse of a matrix,
the backward error <I>E</I> is small, taking the
columns of the computed inverse one at
a time, with a different <I>E</I> for each column [<A HREF="node189.html#lapwn27">62</A>].
The same is true when computing
the eigenvectors of a nonsymmetric matrix.
When computing the eigenvalues and eigenvectors
of 550#550, 551#551 or 552#552, 
with <I>A</I> symmetric and <I>B</I> symmetric and positive definite
(using PxSYGVX or PxHEGVX), the method may not be backward normwise
stable if
<A NAME="5047">&#160;</A><A NAME="5048">&#160;</A><A NAME="5049">&#160;</A><A NAME="5050">&#160;</A>
<I>B</I> has a large condition number 553#553,
although it has useful error bounds in this case too
(see section <A HREF="node144.html#secgendef">6.9</A>). Solving the Sylvester equation<A NAME="5052">&#160;</A>
<I>AX</I>+<I>XB</I>=<I>C</I> for the matrix <I>X</I> may not be backward stable, although
there are again useful error bounds for <I>X</I> [<A HREF="node189.html#higham93">83</A>].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8056">...error.</A><DD>For other algorithms, the answers (and computed error bounds) 
are as accurate as though the algorithms were componentwise relatively backward 
stable, even though they are not. These algorithms are called 
<EM>componentwise relatively forward stable</EM>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8057">...bound</A><DD>As discussed in 
section&nbsp;<A HREF="node135.html#secnormnotation">6.3</A>, this approximate error bound
may underestimate the true error by a factor <I>p</I>(<I>n</I>),
which is a modestly growing function of the problem dimension <I>n</I>.
Often 569#569.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8103">...vectors</A><DD>These bounds are special
cases of those in section&nbsp;<A HREF="node141.html#secsym">6.7</A> 
since the singular values
and vectors of <I>A</I> are simply related to the eigenvalues and eigenvectors of
the Hermitian matrix 700#700 [<A HREF="node189.html#GVL2">71</A>, p. 427,].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="6125">...magnitude:</A><DD>This bound is guaranteed
only if the Level 3 BLAS are implemented in a conventional way,
not in a fast way.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8108">...large.</A><DD>Another interpretation of chordal distance is as half the usual 
Euclidean distance between the projections of 714#714 and
637#637 on the Riemann sphere, i.e., half the length of the chord
connecting the projections.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE> </DL>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>