1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
|
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Footnotes</TITLE>
<META NAME="description" CONTENT="Footnotes">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
<DL> <DT><A NAME="779">...output</A><DD>This example program computes the relative machine precision
which causes, on some systems, the IEEE floating-point exception
flags to be raised. This may result in the printing of a warning
message. This is normal.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="782">...output</A><DD>This example program computes the relative machine precision
which causes, on some systems, the IEEE floating-point exception
flags to be raised. This may result in the printing of a warning
message. This is normal.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2653">...output),</A><DD>(Local input or local
output) means that the argument may be either a local input
argument or a local output argument, depending on the values
of other arguments; for example, in the PxyySVX driver routines,
some arguments are used either as local output arguments to return
details of a factorization, or as local input arguments to supply
details of a previously computed factorization.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="2654">...input),</A><DD>(local or global input) is used
to describe the length of the workspace arguments, e.g., LWORK,
where the value can be local input specifying the size of the
local WORK array, or global input LWORK=-1 specifying a global
query for the amount of workspace required.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3346">...input)</A><DD>(local or global input) is used
to describe the length of the workspace arguments, e.g., LWORK,
where the value can be local input specifying the size of the
local WORK array, or global input LWORK=-1 specifying a global
query for the amount of workspace required.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3563">...size</A><DD>The block size must be large enough
that the local matrix multiply is efficient. A block size of 64
suffices for most
computers that have only one processor per node. Computers that
have multiple shared-memory processors on each node may require a larger
block size.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3796">...(DSSL)</A><DD> Dakota Scientific Software, Inc., 501 East Saint Joseph
Street, Rapid City, SD 57701-3995 USA, (605) 394-2471
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3846">...(DSSL)</A><DD> Dakota Scientific Software, Inc., 501 East Saint Joseph
Street, Rapid City, SD 57701-3995 USA, (605) 394-2471
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="3903">...PSLAHQR/PDLAHQR.</A><DD>Strictly
speaking, PSLAHQR/PDLAHQR is an auxiliary routine
for computing the eigenvalues and optionally the
corresponding eigenvectors of the more general case
of nonsymmetric matrices.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="7993">...computer.</A><DD>The ScaLAPACK sample
timer page (contained within the ScaLAPACK examples
directory on <EM>netlib</EM> and on the CD-ROM) has a BLACS port
of the message-passing program and instructions for
building the BLAS timing program.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8006">...PxSYEVX.</A><DD>See section <A HREF="node42.html#subsecnaming">3.1.3</A> for explanation
of the naming convention used for ScaLAPACK routines.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8007">...'E'))</A><DD>ICTXT refers to the BLACS CONTEXT parameter.
Refer to section <A HREF="node71.html#secblacscontext">4.1.2</A> for further details.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="4433">...digit,</A><DD>This is the
case on the Cray C90 and its predecessors and emulators.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="4440">...PCs,</A><DD>Important machines that do not implement the IEEE standard
include the CRAY X-MP, CRAY Y-MP, CRAY 2, CRAY C90, IBM 370, DEC Vax,
and their emulators.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8008">...[#lawn112##1#].</A><DD>Running
either machine in non-default mode to avoid this problem, either so that
the IBM RS/6000 flushes denormalized numbers to zero or so that the DEC Alpha
handles denormalized numbers correctly by doing gradual underflow, slows
down the machine significantly [<A HREF="node189.html#demmelli93">42</A>].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5012">....</A><DD>
Sometimes our algorithms satisfy only 535#535 where both
532#532 and 536#536 are small. This does not significantly change the following
analysis.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5013">...small.</A><DD>More generally,
we need only Lipschitz continuity of <I>f</I> and may use the Lipschitz
constant in place of <I>f</I>' in deriving error bounds.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="5039">...exist).</A><DD>This is
a different use of the term ill-posed from that used in other contexts. For
example, to be well-posed (not ill-posed) in the sense of Hadamard,
it is sufficient for <I>f</I> to be continuous,
whereas we require Lipschitz continuity.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8055">...described</A><DD>There are some
caveats to this statement. When computing the inverse of a matrix,
the backward error <I>E</I> is small, taking the
columns of the computed inverse one at
a time, with a different <I>E</I> for each column [<A HREF="node189.html#lapwn27">62</A>].
The same is true when computing
the eigenvectors of a nonsymmetric matrix.
When computing the eigenvalues and eigenvectors
of 550#550, 551#551 or 552#552,
with <I>A</I> symmetric and <I>B</I> symmetric and positive definite
(using PxSYGVX or PxHEGVX), the method may not be backward normwise
stable if
<A NAME="5047"> </A><A NAME="5048"> </A><A NAME="5049"> </A><A NAME="5050"> </A>
<I>B</I> has a large condition number 553#553,
although it has useful error bounds in this case too
(see section <A HREF="node144.html#secgendef">6.9</A>). Solving the Sylvester equation<A NAME="5052"> </A>
<I>AX</I>+<I>XB</I>=<I>C</I> for the matrix <I>X</I> may not be backward stable, although
there are again useful error bounds for <I>X</I> [<A HREF="node189.html#higham93">83</A>].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8056">...error.</A><DD>For other algorithms, the answers (and computed error bounds)
are as accurate as though the algorithms were componentwise relatively backward
stable, even though they are not. These algorithms are called
<EM>componentwise relatively forward stable</EM>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8057">...bound</A><DD>As discussed in
section <A HREF="node135.html#secnormnotation">6.3</A>, this approximate error bound
may underestimate the true error by a factor <I>p</I>(<I>n</I>),
which is a modestly growing function of the problem dimension <I>n</I>.
Often 569#569.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8103">...vectors</A><DD>These bounds are special
cases of those in section <A HREF="node141.html#secsym">6.7</A>
since the singular values
and vectors of <I>A</I> are simply related to the eigenvalues and eigenvectors of
the Hermitian matrix 700#700 [<A HREF="node189.html#GVL2">71</A>, p. 427,].
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="6125">...magnitude:</A><DD>This bound is guaranteed
only if the Level 3 BLAS are implemented in a conventional way,
not in a fast way.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE><DT><A NAME="8108">...large.</A><DD>Another interpretation of chordal distance is as half the usual
Euclidean distance between the projections of 714#714 and
637#637 on the Riemann sphere, i.e., half the length of the chord
connecting the projections.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE> </DL>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>
|