| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 
 | <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Eigenvalue Problems</TITLE>
<META NAME="description" CONTENT="Eigenvalue Problems">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html3695" HREF="node120.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3693" HREF="node117.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3689" HREF="node118.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3697" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3698" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3696" HREF="node120.html">Performance Evaluation</A>
<B>Up:</B> <A NAME="tex2html3694" HREF="node117.html">Solving Linear Systems of </A>
<B> Previous:</B> <A NAME="tex2html3690" HREF="node118.html">Solving Linear Least Squares </A>
<BR> <P>
<H3><A NAME="SECTION04526200000000000000">Eigenvalue Problems</A></H3>
                       <A NAME="subseceig"> </A>
<P>
ScaLAPACK includes block algorithms for
solving symmetric<A NAME="4024"> </A> and nonsymmetric
eigenvalue problems as well as for computing the singular value
decomposition.
<P>
The first step in solving many types of eigenvalue problems is to reduce
the original matrix to a ``condensed form'' by orthogonal
transformations.
<A NAME="4025"> </A>
<A NAME="4026"> </A>
In the reduction to condensed
forms, the unblocked algorithms
all use elementary Householder
matrices and have good vector
performance. Block forms of
these algorithms have been 
developed [<A HREF="node189.html#lawn92">28</A>],
but all require additional
operations, and a significant
proportion of the work must
still be performed by the
Level 2 PBLAS. Thus, there
is less possibility of 
compensating for the extra
operations.
<P>
The algorithms concerned are listed below:
<P>
<UL>
<LI> Reduction of a symmetric matrix to tridiagonal
       form<A NAME="4029"> </A> to solve a
       symmetric eigenvalue problem: ScaLAPACK routine
       PSSYTRD<A NAME="4030"> </A>/PDSYTRD<A NAME="4031"> </A>
       applies a symmetric block update of the form
       <BR><IMG WIDTH=340 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16854" SRC="img404.gif"><BR>
       using the Level 3 PBLAS routine PSSYR2K<A NAME="4032"> </A>/PDSYR2K<A NAME="4033"> </A>;
       Level 3 PBLAS account for at most half the work.
<LI> Reduction of a rectangular matrix to bidiagonal
       form<A NAME="4034"> </A> to compute a singular
       value decomposition: ScaLAPACK routine PSGEBRD
       <A NAME="4035"> </A>/PDGEBRD<A NAME="4036"> </A> applies
       a block update of the form
       <BR><IMG WIDTH=339 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16855" SRC="img405.gif"><BR>
       using two calls to the Level 3 PBLAS routine PSGEMM/PDGEMM;
       Level 3 PBLAS account for at most half the work.
<LI> Reduction of a nonsymmetric matrix to Hessenberg
       form<A NAME="4037"> </A><A NAME="4038"> </A>
       to solve a nonsymmetric eigenvalue problem: ScaLAPACK routine
       PSGEHRD<A NAME="4039"> </A>/PDGEHRD<A NAME="4040"> </A> applies a
       block update of the form
       <BR><IMG WIDTH=369 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16856" SRC="img406.gif"><BR>
       Level 3 PBLAS account for at most three-quarters of the work.
<P>
</UL>
<P>
Extra work must be performed
to compute the <I>N</I>-by-<I>K</I> 
matrices <I>X</I> and <I>Y</I> that
are required for the block
updates (<I>K</I> is the block
size), and extra workspace
is needed to store them.
<P>
Following the
reduction of 
a dense symmetric matrix
to tridiagonal
form <I>T</I>, one
must compute the
eigenvalues and 
(optionally) 
eigenvectors
of <I>T</I>. The
current version
of ScaLAPACK
includes two
different 
routines
PSSYEVX<A NAME="4042"> </A>/PDSYEVX<A NAME="4043"> </A>
and PSSYEV<A NAME="4044"> </A>/PDSYEV<A NAME="4045"> </A>
for solving symmetric
eigenproblems.
PSSYEVX/PDSYEVX
uses bisection and 
inverse iteration.
PSSYEV/PDSYEV
uses the <I>QR</I> algorithm.
Table <A HREF="node119.html#tabevxperf">5.12</A><A NAME="4047"> </A>
and Table <A HREF="node119.html#tabevperf">5.13</A><A NAME="4049"> </A>
show the execution time
in seconds of the routines
PSSYEVX/PDSYEVX and
PSSYEV<A NAME="4050"> </A>/PDSYEV<A NAME="4051"> </A>, 
respectively,
for computing the
eigenvalues and
eigenvectors of
symmetric matrices
of order <I>N</I>. 
The performance of PSSYEVX<A NAME="4052"> </A>/PDSYEVX<A NAME="4053"> </A>
deteriorates in the face of large clusters of eigenvalues.
ScaLAPACK uses a nonscalable definition of clusters (because
we chose to remain consistent with LAPACK).  Hence, matrices
larger than <I>N</I>=1000 tend to have at least one very large cluster
(see section <A HREF="node126.html#subsecperfsyevx">5.3.6</A>).  This needs further study.
More
detailed information
concerning the performance
of these routines may be
found in [<A HREF="node189.html#lawn86">40</A>].
Table <A HREF="node119.html#tabsvdperf">5.14</A><A NAME="4057"> </A>
shows the execution time
in seconds of the routines
PSGESVD<A NAME="4058"> </A>/PDGESVD<A NAME="4059"> </A>
for computing the
singular values and
the corresponding
right and left 
singular vectors
of a general matrix
of order <I>N</I>.
<P>
<P><A NAME="4061"> </A><A NAME="tabevxperf"> </A><IMG WIDTH=747 HEIGHT=584 ALIGN=BOTTOM ALT="table4060" SRC="img407.gif"><BR>
<STRONG>Table 5.12:</STRONG> Execution time in seconds of 
	PSSYEVX/PDSYEVX for square
          matrices of order <I>N</I><BR>
<P>
For computing the eigenvalues and eigenvectors of a Hessenberg
matrix--or rather, for computing its Schur factorization--
two flavors of block algorithms have been developed. The first
algorithm implemented in the routine 
PSLAHQR<A NAME="4081"> </A>/PDLAHQR<A NAME="4082"> </A>
results from the parallelization of the <I>QR</I> algorithm.
The key idea is to generate many shifts at once rather than two
at a time, thereby allowing all bulges to carry out up-to-date
shifts. The second algorithm that is currently implemented as a
prototype code<A NAME="4083"> </A> 
is based on the computation of the matrix sign function 
[<A HREF="node189.html#baidemmel92a">14</A>, <A HREF="node189.html#lawn91">13</A>, <A HREF="node189.html#baidemmel97">12</A>].
In this section, however, only performance results of the
first approach are reported.
<P><A NAME="4086"> </A><A NAME="tabevperf"> </A><IMG WIDTH=747 HEIGHT=584 ALIGN=BOTTOM ALT="table4085" SRC="img408.gif"><BR>
<STRONG>Table 5.13:</STRONG> Execution time in seconds of 
	PSSYEV/PDSYEV for square
          matrices of order <I>N</I><BR>
<P>
<P><A NAME="4107"> </A><A NAME="tabsvdperf"> </A><IMG WIDTH=747 HEIGHT=483 ALIGN=BOTTOM ALT="table4106" SRC="img409.gif"><BR>
<STRONG>Table 5.14:</STRONG> Execution time in seconds of 
	PSGESVD/PDGESVD for square
          matrices of order <I>N</I><BR>
<P>
Table <A HREF="node119.html#tabpdlahqr">5.15</A><A NAME="4127"> </A>
summarizes performance results obtained for the ScaLAPACK
routine PDLAHQR doing a full Schur decomposition of an
order <I>N</I> upper Hessenberg matrix.  The supercomputers
the table gives timings for are the Intel XP/S MP Paragon 
supercomputer and technology from the Intel ASCI Option Red 
Supercomputer.  For both machines, we assume only one CPU
is being used for computation on this code.
The Schur decomposition is based on iteratively
applying orthogonal similarity transformations on a Hessenberg matrix
<I>H</I> such as
<BR><IMG WIDTH=294 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16857" SRC="img410.gif"><BR>
until <I>T</I> becomes pseudo-upper triangular (i.e., in the real case,
having one by one or two by two subdiagonal blocks.)
The serial performance (assuming roughly <IMG WIDTH=38 HEIGHT=16 ALIGN=BOTTOM ALT="tex2html_wrap_inline16994" SRC="img411.gif"> flops) of the LAPACK
routine DLAHQR for computing a complex Schur decomposition is around
8.5 Mflops on the Intel MP Paragon supercomputer.  The enhanced performance
shown in Table <A HREF="node119.html#tabpdlahqr">5.15</A> is slightly faster, a bit above 9 Mflops,
and ends up peaking around 10 Mflops because of the block application
of Householder transforms found in the ScaLAPACK serial auxiliary
routine DLAREF.  For the technology behind the Intel ASCI Option Red
Supercomputer, it peaks at several times the speed of the Paragon, and has
a slightly faster drop off in efficiency.  For further details and timings,
please see [<A HREF="node189.html#lawn121">79</A>].
<P><A NAME="4131"> </A><A NAME="tabpdlahqr"> </A><IMG WIDTH=746 HEIGHT=325 ALIGN=BOTTOM ALT="table4130" SRC="img412.gif"><BR>
<STRONG>Table 5.15:</STRONG> Execution time in seconds of
        PDLAHQR for square
          matrices of order <I>N</I><BR>
<P>
A more detailed performance analysis of the eigensolvers
included in the ScaLAPACK software library can be found
in [<A HREF="node189.html#henry97a">48</A>, <A HREF="node189.html#lawn121">79</A>].
Finally, we note that research into parallel algorithms
for symmetric and nonsymmetric eigenproblems continues
[<A HREF="node189.html#bai92a">11</A>, <A HREF="node189.html#huss93a">86</A>, <A HREF="node189.html#dhillonparlett97">45</A>],
and future versions of ScaLAPACK will be updated
to contain the best algorithms available.
<P>
<HR><A NAME="tex2html3695" HREF="node120.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3693" HREF="node117.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3689" HREF="node118.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3697" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3698" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3696" HREF="node120.html">Performance Evaluation</A>
<B>Up:</B> <A NAME="tex2html3694" HREF="node117.html">Solving Linear Systems of </A>
<B> Previous:</B> <A NAME="tex2html3690" HREF="node118.html">Solving Linear Least Squares </A>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>
 |