File: node130.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (317 lines) | stat: -rw-r--r-- 8,601 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Tuning the Distribution Parameters for Better Performance</TITLE>
<META NAME="description" CONTENT="Tuning the Distribution Parameters for Better Performance">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html3832" HREF="node131.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3830" HREF="node127.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3826" HREF="node129.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3834" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3835" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3833" HREF="node131.html">Performance of Banded and </A>
<B>Up:</B> <A NAME="tex2html3831" HREF="node127.html">Performance Improvement</A>
<B> Previous:</B> <A NAME="tex2html3827" HREF="node129.html">Choosing a Faster BLAS </A>
<BR> <P>
<H2><A NAME="SECTION04543000000000000000">Tuning the Distribution Parameters for Better Performance</A></H2>
<P>
                                                         <A NAME="subsectuning">&#160;</A>
<A NAME="4261">&#160;</A><A NAME="4262">&#160;</A>
<P>
By adjusting the data distribution of the matrices, 
users may be able to achieve 10-50&nbsp;% greater 
performance than by using 
the standard data distribution suggested in section&nbsp;<A HREF="node106.html#distmemcomp">5.1.1</A>.
<P>
The performance attained using the standard data distribution 
is usually fairly close to optimal; hence, if one is
getting poor performance, it is unlikely that 
modifying the data distribution will solve the performance
problem.
<P>
An optimal data distribution
depends upon several factors including
the performance
characteristics
of the hardware,
the ScaLAPACK routine invoked,
and (to a certain
extent) the
problem size.
The algorithms
currently
implemented in
ScaLAPACK 
fall 
into two main 
classes.
<P>
The first class
of algorithms
is distinguished 
by the fact 
that at each
step a block
of rows or 
columns is
replicated
in all process
rows or columns.
Furthermore, the
process row or 
column source of this 
broadcast operation
is the one immediately 
following -- or
preceding depending
on the algorithm --
the process row
or column source
of the broadcast
operation performed
at the previous
step of the algorithm.
The <I>QR</I> factorization
and the right looking 
variant of the <I>LU</I>
factorization
are typical 
examples of
such algorithms,
where it is thus
possible to 
establish and
maintain a
communication
pipeline in
order to overlap
computation and
communication.
The direction
of the pipeline
determines the
best possible
shapes of the
process grid.
For instance,
the <I>LU</I>, <I>QR</I>, and
<I>QL</I> factorizations
perform better
for ``flat''
process grids
(<IMG WIDTH=59 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline17130" SRC="img423.gif">). These
factorizations
perform a reduction
operation for each
matrix column for
pivoting in the
<I>LU</I> factorization 
and for computing
the Householder
transformation 
in the <I>QR</I> and <I>QL</I>
decompositions.
Moreover, after
this reduction
has been performed,
it is important
to update the 
next block of
columns as fast
as possible.
This update is done
by broadcasting
the current block
of columns using
a ring topology,
that is, feeding the
ongoing communication
pipe. Similarly,
the performance
of the <I>LQ</I> and <I>RQ</I>
factorizations
take advantage
of ``tall'' grids 
(<IMG WIDTH=59 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline17142" SRC="img424.gif">) for
the same, but
transposed, 
reasons.
<P>
The second group
of algorithms
is characterized
by the physical
transposition of
a block of rows
and/or columns 
at each step.
Square or near 
square grids
are more adequate
from a performance
point of view for
these transposition
operations. Examples
of such algorithms
implemented in
ScaLAPACK include
the right-looking
variant of the 
Cholesky factorization,
the matrix inversion
algorithm, and the 
reductions to bidiagonal
form (PxGEBRD),
to Hessenberg form
(PxGEHRD), and 
to tridiagonal form
(PxSYTRD). It
is interesting to
note that if
square grids are
more efficient
for these matrix
reduction operations,
the corresponding 
eigensolver usually
prefers flatter grids.
<P>
Table&nbsp;<A HREF="node130.html#tabsugg">5.17</A>
summarizes this 
paragraph and
provides suggestions
for selecting the
most appropriate 
shape of the 
logical <IMG WIDTH=57 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline12182" SRC="img25.gif"> 
process grid from
a performance
point of view.
The results 
presented in
this table may
need to be refined
depending on
the physical
characteristics
of the physical
interconnection
network.
<P><A NAME="4272">&#160;</A><A NAME="tabsugg">&#160;</A><IMG WIDTH=547 HEIGHT=197 ALIGN=BOTTOM ALT="table4271" SRC="img425.gif"><BR>
<STRONG>Table 5.17:</STRONG> Process grid suggestions for some ScaLAPACK drivers<BR>
<P>
<P>
Assume that
at most <I>P</I> nodes
are available. A 
natural question
is: Could
we decide which <IMG WIDTH=94 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline17180" SRC="img426.gif"> process grid
should be used?
Similarly, 
depending on
the value of 
<I>P</I>, it is not
always possible
to factor <IMG WIDTH=94 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline17184" SRC="img427.gif"> to create an 
appropriate 
grid shape.
For example,
if the number
of nodes
available is
a prime number
and a square
grid is suitable 
with respect to 
performance, it
may be beneficial
to let some nodes
remain idle so 
that the remaining 
nodes can be arranged
in a ``squarer''
grid.
<P>
If the BLACS
implementation
or the interconnection
network features
high latency, a
one-dimensional data
distribution will improve
the performance for
small and medium 
problem sizes.
The number
of messages
significantly 
impacts the 
performance
achieved for
small problem
sizes, whereas
the total
message volume
becomes a
dominant
factor
for medium-sized  problems.  The
performance
cost due to
floating-point
operations
dominates for
large problem
sizes. 
One-dimensional
data distributions
reduce the 
total number
of messages
exchanged on the
interconnection
network but 
increase the
total volume of message traffic.
Therefore,
one-dimensional data distributions are better
for small problem sizes but are worse
for large problem sizes, especially when
one is using eight or more processors.
<P>
Determining optimal,
or near-optimal,
distribution
block sizes with
respect to performance
<A NAME="4312">&#160;</A> for a given 
platform is a 
difficult task.
However, it is
empirically true
that as soon as a
good block size
or even a set of 
good distribution
parameters is
found, the 
performance
is not highly
sensitive to
small changes
of the values
of these parameters.
<P>
<HR><A NAME="tex2html3832" HREF="node131.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3830" HREF="node127.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3826" HREF="node129.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3834" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3835" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3833" HREF="node131.html">Performance of Banded and </A>
<B>Up:</B> <A NAME="tex2html3831" HREF="node127.html">Performance Improvement</A>
<B> Previous:</B> <A NAME="tex2html3827" HREF="node129.html">Choosing a Faster BLAS </A>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>