File: node47.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (58 lines) | stat: -rw-r--r-- 3,785 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Symmetric Eigenproblems </TITLE>
<META NAME="description" CONTENT="Symmetric Eigenproblems ">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html2735" HREF="node48.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html2733" HREF="node46.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html2727" HREF="node46.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html2737" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html2738" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html2736" HREF="node48.html">Singular Value Decomposition</A>
<B>Up:</B> <A NAME="tex2html2734" HREF="node46.html">Standard Eigenvalue and Singular </A>
<B> Previous:</B> <A NAME="tex2html2728" HREF="node46.html">Standard Eigenvalue and Singular </A>
<BR> <P>
<H3><A NAME="SECTION04323100000000000000">Symmetric Eigenproblems </A></H3>
<A NAME="subsecdriveeigSEP">&#160;</A>
<A NAME="1051">&#160;</A>
<P>
The <B>symmetric eigenvalue problem (SEP)</B> is to find the <B>eigenvalues</B><A NAME="1054">&#160;</A><A NAME="1055">&#160;</A>,
<IMG WIDTH=8 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12778" SRC="img69.gif">, and corresponding <B>eigenvectors</B><A NAME="1057">&#160;</A>, <IMG WIDTH=39 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline12780" SRC="img70.gif">, such that
<BR><IMG WIDTH=391 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath12772" SRC="img71.gif"><BR>
For the <B>Hermitian eigenvalue problem</B><A NAME="1061">&#160;</A> we have
<BR><IMG WIDTH=328 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath12773" SRC="img72.gif"><BR>
For both problems the eigenvalues <IMG WIDTH=8 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12778" SRC="img69.gif"> are real.
<P>
When all eigenvalues and eigenvectors have been computed, we write
<BR><IMG WIDTH=295 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath12774" SRC="img73.gif"><BR>
where <IMG WIDTH=12 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline12784" SRC="img74.gif"> is a diagonal matrix whose diagonal elements are the
eigenvalues<A NAME="1062">&#160;</A>, and <I>Z</I> is an orthogonal (or unitary) matrix whose columns
are the eigenvectors.  This is the classical <B>spectral factorization</B>
<A NAME="1064">&#160;</A> of <I>A</I>.
<P>
Two types of driver routines<A NAME="1065">&#160;</A> are provided for symmetric or Hermitian
eigenproblems:
<P>
<UL>
<LI> a <B>simple</B> driver (name ending -EV)<A NAME="1068">&#160;</A><A NAME="1069">&#160;</A>,
which computes all the eigenvalues and
(optionally) the eigenvectors of a symmetric or Hermitian matrix <I>A</I>;
<LI> an <B>expert</B> driver (name ending -EVX)<A NAME="1071">&#160;</A><A NAME="1072">&#160;</A>,
which can compute either all or a selected subset of the eigenvalues,
and (optionally) the corresponding eigenvectors.
<P>
</UL>
<P>
The driver routines are shown in table&nbsp;<A HREF="node48.html#tabdriveseig">3.4</A>.  Currently
the only simple drivers provided are PSSYEV and PDSYEV.
<P>
<BR> <HR>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>