1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Other Factorizations</TITLE>
<META NAME="description" CONTENT="Other Factorizations">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
<A NAME="tex2html2869" HREF="node58.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html2867" HREF="node52.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html2863" HREF="node56.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html2871" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html2872" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html2870" HREF="node58.html">Generalized Orthogonal Factorizations</A>
<B>Up:</B> <A NAME="tex2html2868" HREF="node52.html">Orthogonal Factorizations and Linear </A>
<B> Previous:</B> <A NAME="tex2html2864" HREF="node56.html">Complete Orthogonal Factorization</A>
<BR> <P>
<H3><A NAME="SECTION04332500000000000000">Other Factorizations</A></H3>
<P>
The <B><I>QL</I></B> and <B><I>RQ</I></B> <B>factorizations</B>
<A NAME="1723"> </A><A NAME="1724"> </A><A NAME="1725"> </A><A NAME="1726"> </A> are given by
<BR><IMG WIDTH=351 HEIGHT=48 ALIGN=BOTTOM ALT="displaymath13582" SRC="img153.gif"><BR>
and
<BR><IMG WIDTH=360 HEIGHT=29 ALIGN=BOTTOM ALT="displaymath13583" SRC="img154.gif"><BR>
These factorizations are computed by PxGEQLF and PxGERQF, respectively; they
are<A NAME="1735"> </A><A NAME="1736"> </A><A NAME="1737"> </A><A NAME="1738"> </A><A NAME="1739"> </A><A NAME="1740"> </A><A NAME="1741"> </A><A NAME="1742"> </A>
less commonly used than either the <I>QR</I> or <I>LQ</I> factorizations
described above, but have applications in, for example, the
computation of generalized <I>QR</I> factorizations [<A HREF="node189.html#lawn31">5</A>].
<A NAME="1744"> </A><A NAME="1745"> </A><A NAME="1746"> </A>
<P>
All the factorization routines discussed here (except PxTZRZF)
allow
arbitrary <I>m</I> and <I>n</I>, so that in some cases the matrices <I>R</I> or <I>L</I> are
trapezoidal rather than triangular.
A routine that performs pivoting is provided only for the <I>QR</I> factorization.
<P>
<P><A NAME="1748"> </A><A NAME="tabcompof"> </A><IMG WIDTH=755 HEIGHT=373 ALIGN=BOTTOM ALT="table1747" SRC="img155.gif"><BR>
<STRONG>Table 3.7:</STRONG> Computational routines for orthogonal factorizations<BR>
<P><BR> <HR>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>
|