File: node59.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (63 lines) | stat: -rw-r--r-- 4,619 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Generalized QR Factorization</TITLE>
<META NAME="description" CONTENT="Generalized QR Factorization">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html2895" HREF="node60.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html2893" HREF="node58.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html2887" HREF="node58.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html2897" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html2898" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html2896" HREF="node60.html">Generalized RQ factorization</A>
<B>Up:</B> <A NAME="tex2html2894" HREF="node58.html">Generalized Orthogonal Factorizations</A>
<B> Previous:</B> <A NAME="tex2html2888" HREF="node58.html">Generalized Orthogonal Factorizations</A>
<BR> <P>
<H3><A NAME="SECTION04333100000000000000">Generalized <I>QR</I> Factorization</A></H3>
<A NAME="1829">&#160;</A>
<P>
<A NAME="1830">&#160;</A><A NAME="1831">&#160;</A>
The <B>generalized</B>&nbsp;<B><I>QR</I></B>&nbsp;<B>(GQR) factorization</B> of an <I>n</I>-by-<I>m</I> matrix <I>A</I> and
an <I>n</I>-by-<I>p</I> matrix <I>B</I> is given by the pair of factorizations
<BR><IMG WIDTH=353 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath13656" SRC="img156.gif"><BR>
where <I>Q</I> and <I>Z</I> are respectively <I>n</I>-by-<I>n</I> and <I>p</I>-by-<I>p</I> orthogonal 
matrices
(or unitary matrices if <I>A</I> and <I>B</I> are complex).
<I>R</I> has the form
<BR><IMG WIDTH=378 HEIGHT=63 ALIGN=BOTTOM ALT="displaymath13657" SRC="img157.gif"><BR>
or
<BR><IMG WIDTH=389 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath13658" SRC="img158.gif"><BR>
where <IMG WIDTH=26 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13492" SRC="img140.gif"> is upper triangular. <I>T</I> has the form
<BR><IMG WIDTH=380 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath13659" SRC="img159.gif"><BR>
or
<BR><IMG WIDTH=369 HEIGHT=63 ALIGN=BOTTOM ALT="displaymath13660" SRC="img160.gif"><BR>
where <IMG WIDTH=23 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13706" SRC="img161.gif"> or <IMG WIDTH=23 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13708" SRC="img162.gif"> is upper triangular.
<P>
Note that if <I>B</I> is square and nonsingular, the GQR factorization
of <I>A</I> and <I>B</I> implicitly gives the <I>QR</I> factorization of the matrix <IMG WIDTH=45 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13718" SRC="img163.gif">:
<BR><IMG WIDTH=324 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath13661" SRC="img164.gif"><BR> 
without explicitly computing the matrix inverse <IMG WIDTH=30 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13720" SRC="img165.gif"> or the product <IMG WIDTH=45 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13718" SRC="img163.gif">.
<P>
The routine PxGGQRF computes the GQR<A NAME="1854">&#160;</A> factorization by<A NAME="1855">&#160;</A><A NAME="1856">&#160;</A><A NAME="1857">&#160;</A><A NAME="1858">&#160;</A>
computing first the <I>QR</I> factorization of <I>A</I> and then
the <I>RQ</I> factorization of <IMG WIDTH=36 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline13730" SRC="img166.gif">. 
The orthogonal (or unitary) matrices <I>Q</I> and <I>Z</I>
can be formed explicitly or can be used  just to multiply another given matrix 
in the same way as the 
orthogonal (or unitary) matrix in the <I>QR</I> factorization 
(see section&nbsp;<A HREF="node52.html#subseccomporthog">3.3.2</A>).
<P>
The GQR factorization was introduced in [<A HREF="node189.html#hammarling86">73</A>, <A HREF="node189.html#paige90">100</A>].
The implementation of the GQR factorization here follows that in [<A HREF="node189.html#lawn31">5</A>].
Further generalizations of the GQR<A NAME="1862">&#160;</A> factorization can be found in
[<A HREF="node189.html#demoorvandooren92">36</A>].
<P>
<BR> <HR>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>