File: node60.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (58 lines) | stat: -rw-r--r-- 4,253 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Generalized RQ factorization</TITLE>
<META NAME="description" CONTENT="Generalized RQ factorization">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html2905" HREF="node61.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html2903" HREF="node58.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html2899" HREF="node59.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html2907" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html2908" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html2906" HREF="node61.html">Symmetric Eigenproblems</A>
<B>Up:</B> <A NAME="tex2html2904" HREF="node58.html">Generalized Orthogonal Factorizations</A>
<B> Previous:</B> <A NAME="tex2html2900" HREF="node59.html">Generalized QR Factorization</A>
<BR> <P>
<H3><A NAME="SECTION04333200000000000000">Generalized <I>RQ</I> factorization</A></H3>
<P>
<A NAME="1865">&#160;</A><A NAME="1866">&#160;</A><A NAME="1867">&#160;</A>
The <B>generalized</B>&nbsp;<B><I>RQ</I></B>&nbsp;<B>(GRQ) factorization</B> of an <I>m</I>-by-<I>n</I> matrix <I>A</I> and
a <I>p</I>-by-<I>n</I> matrix <I>B</I> is given by the pair of factorizations
<BR><IMG WIDTH=354 HEIGHT=16 ALIGN=BOTTOM ALT="displaymath13747" SRC="img167.gif"><BR>
where <I>Q</I> and <I>Z</I> are respectively <I>n</I>-by-<I>n</I> and <I>p</I>-by-<I>p</I> orthogonal 
matrices (or unitary matrices if <I>A</I> and <I>B</I> are complex). 
<I>R</I> has the form
<BR><IMG WIDTH=391 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath13748" SRC="img168.gif"><BR>
or
<BR><IMG WIDTH=378 HEIGHT=63 ALIGN=BOTTOM ALT="displaymath13749" SRC="img169.gif"><BR>
where <IMG WIDTH=26 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13555" SRC="img147.gif"> or <IMG WIDTH=26 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13795" SRC="img170.gif"> is upper triangular. <I>T</I> has the form
<BR><IMG WIDTH=369 HEIGHT=63 ALIGN=BOTTOM ALT="displaymath13750" SRC="img171.gif"><BR>
or
<BR><IMG WIDTH=382 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath13751" SRC="img172.gif"><BR>
where <IMG WIDTH=23 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline13799" SRC="img173.gif">  is upper triangular.
<P>
Note that if <I>B</I> is square and nonsingular, the GRQ factorization of
<I>A</I> and <I>B</I> implicitly gives the <I>RQ</I> factorization of the matrix <IMG WIDTH=44 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13809" SRC="img174.gif">:
<BR><IMG WIDTH=324 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath13752" SRC="img175.gif"><BR>
without explicitly computing the matrix inverse <IMG WIDTH=30 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13720" SRC="img165.gif"> or the product
<IMG WIDTH=44 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline13809" SRC="img174.gif">.
<P>
The routine PxGGRQF computes the GRQ factorization<A NAME="1890">&#160;</A><A NAME="1891">&#160;</A><A NAME="1892">&#160;</A><A NAME="1893">&#160;</A><A NAME="1894">&#160;</A><A NAME="1895">&#160;</A>
by computing first the <I>RQ</I> factorization of <I>A</I> and then
the <I>QR</I> factorization of <IMG WIDTH=38 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline13821" SRC="img176.gif">. 
The orthogonal (or unitary) matrices <I>Q</I> and <I>Z</I>
can be formed explicitly or
can be used just to multiply another given matrix in the same way as the 
orthogonal (or unitary) matrix 
in the <I>RQ</I> factorization 
(see section&nbsp;<A HREF="node52.html#subseccomporthog">3.3.2</A>).
<P>
<BR> <HR>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>