File: node65.html

package info (click to toggle)
scalapack-doc 1.5-11
  • links: PTS
  • area: main
  • in suites: bullseye, buster, stretch
  • size: 10,336 kB
  • ctags: 4,931
  • sloc: makefile: 47; sh: 18
file content (67 lines) | stat: -rw-r--r-- 5,446 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Generalized Symmetric Definite Eigenproblems</TITLE>
<META NAME="description" CONTENT="Generalized Symmetric Definite Eigenproblems">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
 <A NAME="tex2html2962" HREF="node66.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html2960" HREF="node50.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html2956" HREF="node64.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html2964" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html2965" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html2963" HREF="node66.html">Orthogonal or Unitary Matrices</A>
<B>Up:</B> <A NAME="tex2html2961" HREF="node50.html">Computational Routines</A>
<B> Previous:</B> <A NAME="tex2html2957" HREF="node64.html">Singular Value Decomposition</A>
<BR> <P>
<H2><A NAME="SECTION04337000000000000000">Generalized Symmetric Definite Eigenproblems</A></H2>
<P>
<A NAME="2118">&#160;</A><A NAME="2119">&#160;</A>
<P>
 This section is concerned with the solution of the generalized eigenvalue
 problems <IMG WIDTH=77 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12875" SRC="img83.gif">, <IMG WIDTH=77 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12877" SRC="img84.gif">, and <IMG WIDTH=77 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12879" SRC="img85.gif">, where
 <I>A</I> and <I>B</I> are real symmetric or complex Hermitian and <I>B</I> is positive definite.
 Each of these problems can be reduced to a standard symmetric
 eigenvalue problem, using a Cholesky factorization of <I>B</I> as either
 <IMG WIDTH=71 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14317" SRC="img219.gif"> or <IMG WIDTH=74 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14319" SRC="img220.gif"> (<IMG WIDTH=36 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14321" SRC="img221.gif"> or <IMG WIDTH=38 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14323" SRC="img222.gif"> in the Hermitian case).
<P>
 With <IMG WIDTH=71 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14317" SRC="img219.gif">, we have
 <BR><IMG WIDTH=428 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath14301" SRC="img223.gif"><BR>
 Hence the eigenvalues of <IMG WIDTH=77 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline12875" SRC="img83.gif"> are those of <IMG WIDTH=64 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline14329" SRC="img224.gif">,
 where <I>C</I> is the symmetric matrix <IMG WIDTH=111 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14333" SRC="img225.gif"> and <IMG WIDTH=63 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline14335" SRC="img226.gif">.
 In the complex case <I>C</I> is Hermitian with <IMG WIDTH=113 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14339" SRC="img227.gif"> and <IMG WIDTH=65 HEIGHT=31 ALIGN=MIDDLE ALT="tex2html_wrap_inline14341" SRC="img228.gif">.
<P>
 Table&nbsp;<A HREF="node65.html#tabgst">3.11</A> summarizes how each of the three types of problem
 may be reduced to standard form<A NAME="2127">&#160;</A><A NAME="2128">&#160;</A>
 <IMG WIDTH=64 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline14329" SRC="img224.gif">, and how the eigenvectors <I>z</I>
 of the original problem may be recovered from the eigenvectors <I>y</I> of the
 reduced problem. The table applies to real problems; for complex problems,
 transposed matrices must be replaced by conjugate transposes.
<P>
 <P><A NAME="2130">&#160;</A><A NAME="tabgst">&#160;</A><IMG WIDTH=507 HEIGHT=176 ALIGN=BOTTOM ALT="table2129" SRC="img229.gif"><BR>
<STRONG>Table 3.11:</STRONG> Reduction of generalized symmetric definite eigenproblems to standard
 problems<BR>
<P>
<P>
Given <I>A</I> and a Cholesky factorization of <I>B</I>, 
the routines PxyyGST overwrite <I>A</I>
<A NAME="2161">&#160;</A><A NAME="2162">&#160;</A><A NAME="2163">&#160;</A><A NAME="2164">&#160;</A>
with the matrix <I>C</I> of the corresponding standard problem
<IMG WIDTH=64 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline14329" SRC="img224.gif"> (see table <A HREF="node65.html#tabcompgeig">3.12</A>). 
This may then be solved by using the routines described in 
subsection&nbsp;<A HREF="node61.html#subseccompsep">3.3.4</A>.
No special routines are needed
to recover the eigenvectors <I>z</I> of the generalized problem from
the eigenvectors <I>y</I> of the standard problem, because these
computations are simple applications of Level 2 or Level 3 BLAS.
<P>
<P><A NAME="2168">&#160;</A><A NAME="tabcompgeig">&#160;</A><IMG WIDTH=697 HEIGHT=67 ALIGN=BOTTOM ALT="table2167" SRC="img230.gif"><BR>
<STRONG>Table 3.12:</STRONG> Computational routines for the generalized symmetric definite eigenproblem<BR>
<P><BR> <HR>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>