1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Local Storage Scheme and Block-Cyclic Mapping</TITLE>
<META NAME="description" CONTENT="Local Storage Scheme and Block-Cyclic Mapping">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
<A NAME="tex2html3134" HREF="node77.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3132" HREF="node74.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3126" HREF="node75.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3136" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3137" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3135" HREF="node77.html">Array Descriptor for In-core </A>
<B>Up:</B> <A NAME="tex2html3133" HREF="node74.html">In-core Dense Matrices</A>
<B> Previous:</B> <A NAME="tex2html3127" HREF="node75.html">The Two-dimensional Block-Cyclic Distribution</A>
<BR> <P>
<H2><A NAME="SECTION04432000000000000000">Local Storage Scheme and Block-Cyclic Mapping</A></H2>
<P>
<A NAME="seclocalstorage"> </A>
<P>
The block-cyclic distribution scheme
is a mapping of a set of blocks onto
the processes. The previous section
informally described this mapping as
well as some of its properties. To
be complete, we must now explain how
the blocks that are mapped to the
same process are arranged and
stored in the local process memory.
In other words, we shall describe
the precise mapping that associates
to a matrix entry identified by its
global indexes the coordinates of
the process that owns it and its
local position within that process's
memory.
<P>
Suppose we have an array of length
<I>N</I> to be stored on <I>P</I> processes.
By convention, the array entries
are numbered 1 through <I>N</I> and
the processes are numbered 0
through <I>P</I>-1. First, the array
is divided into contiguous blocks
of size <I>NB</I>. When <I>NB</I> does not
divide <I>N</I> evenly, the last block
of array elements will only contain
<IMG WIDTH=98 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline14699" SRC="img271.gif"> entries instead
of <I>NB</I>. By convention, these blocks
are numbered starting from zero and
dealt out to the processes like a
deck of cards. In other words, if
we assume that the process 0
receives the first block, the <IMG WIDTH=20 HEIGHT=15 ALIGN=BOTTOM ALT="tex2html_wrap_inline14705" SRC="img272.gif">
block is assigned to the process of
coordinate <IMG WIDTH=76 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline14707" SRC="img273.gif">. The
blocks assigned to the same process
are stored contiguously in memory.
The mapping of an array entry
globally indexed by <I>I</I> is defined
by the following analytical equation:
<BR><IMG WIDTH=391 HEIGHT=17 ALIGN=BOTTOM ALT="displaymath14669" SRC="img274.gif"><BR>
where <I>I</I> is a global index in the
array, <I>l</I> is the local block coordinate
into which this entry resides, <I>p</I>
is the coordinate of the process
owning that block, and finally <I>x</I>
is the coordinate within that block
where the global array entry of
index <I>I</I> is to be found. It is
then fairly easy to establish the
analytical relationship between
these variables. One obtains:
<BR><A NAME="eqnindexmap"> </A><IMG WIDTH=704 HEIGHT=18 ALIGN=BOTTOM ALT="equation2409" SRC="img275.gif"><BR>
These equations allow to determine
the local information, i.e. the
local index <IMG WIDTH=82 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline14721" SRC="img276.gif"> as
well as the process coordinate
<I>p</I> corresponding to a global entry
identified by its global index <I>I</I>
and conversely. Table <A HREF="node76.html#tabbmap">4.3</A>
illustrates this mapping for the block
layout when <I>P</I>=2 and <I>N</I>=16, i.e.,
<I>NB</I>=8. At most one block is assigned
to each process.
<P><A NAME="2417"> </A><A NAME="tabbmap"> </A><IMG WIDTH=616 HEIGHT=111 ALIGN=BOTTOM ALT="table2416" SRC="img277.gif"><BR>
<STRONG>Table 4.3:</STRONG> One-dimensional block mapping example for <I>P</I>=2 and <I>N</I>=16<BR>
<P>
<P>
This example of the one-dimensional
block distribution mapping can be
expressed in HPF<A NAME="2425"> </A>
by using the following statements:
<PRE> REAL :: X( N )
!HPF$ PROCESSORS PROC( P )
!HPF$ DISTRIBUTE X( BLOCK( NB ) ) ONTO PROC</PRE>
<P>
Table <A HREF="node76.html#tabcmap">4.4</A> illustrates
Equation <A HREF="node76.html#eqnindexmap">4.1</A> for
the cyclic layout, i.e., <I>NB</I>=1
when <I>P</I>=2 and <I>N</I>=16.
<P><A NAME="2429"> </A><A NAME="tabcmap"> </A><IMG WIDTH=616 HEIGHT=111 ALIGN=BOTTOM ALT="table2428" SRC="img278.gif"><BR>
<STRONG>Table 4.4:</STRONG> One-dimensional cyclic mapping example for <I>P</I>=2
and <I>N</I>=16<BR>
<P>
<P>
This example of the one-dimensional cyclic
distribution mapping can be expressed in
HPF<A NAME="2437"> </A> by using the
following statements:
<PRE> REAL :: X( N )
!HPF$ PROCESSORS PROC( P )
!HPF$ DISTRIBUTE X( CYCLIC ) ONTO PROC</PRE>
<P>
Table <A HREF="node76.html#tabbcmap">4.5</A> illustrates
Equation <A HREF="node76.html#eqnindexmap">4.1</A> for
the block-cyclic layout when <I>P</I>=2,
<I>NB</I>=3 and <I>N</I>=16.
<P><A NAME="2441"> </A><A NAME="tabbcmap"> </A><IMG WIDTH=616 HEIGHT=111 ALIGN=BOTTOM ALT="table2440" SRC="img279.gif"><BR>
<STRONG>Table 4.5:</STRONG> One-dimensional block-cyclic mapping example for
<I>P</I>=2, <I>NB</I>=3 and <I>N</I>=16<BR>
<P>
<P>
This example of the one-dimensional cyclic
distribution mapping can be expressed in
HPF<A NAME="2449"> </A> by using the
following statements:
<PRE> REAL :: X( N )
!HPF$ PROCESSORS PROC( P )
!HPF$ DISTRIBUTE X( CYCLIC( NB ) ) ONTO PROC</PRE>
<P>
There is in fact no real
reason to always deal out
the blocks starting with
the process 0. In fact,
it is sometimes useful to
start the data distribution
with the process of arbitrary
coordinate SRC, in which case
Equation <A HREF="node76.html#eqnindexmap">4.1</A>
becomes:
<BR><A NAME="eqnindexmap1"> </A><IMG WIDTH=522 HEIGHT=67 ALIGN=BOTTOM ALT="equation2451" SRC="img280.gif"><BR>
<P>
Table <A HREF="node76.html#tabbcmap0">4.6</A>
illustrates Equation <A HREF="node76.html#eqnindexmap1">4.2</A>
for the block-cyclic layout when <IMG WIDTH=56 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14791" SRC="img281.gif">,
<IMG WIDTH=79 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14793" SRC="img282.gif">, <IMG WIDTH=73 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline14795" SRC="img283.gif"> and <IMG WIDTH=67 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline14797" SRC="img284.gif">.
<P><A NAME="2462"> </A><A NAME="tabbcmap0"> </A><IMG WIDTH=616 HEIGHT=111 ALIGN=BOTTOM ALT="table2461" SRC="img285.gif"><BR>
<STRONG>Table 4.6:</STRONG> One-dimensional block-cyclic mapping example for
<I>P</I>=2, <I>SRC</I>=1, <I>NB</I>=3 and <I>N</I>=16<BR>
<P>
This example
of the one-dimensional
block-cyclic distribution
mapping can be expressed
in HPF<A NAME="2470"> </A>
by using the following statements:
<PRE> REAL :: X( N )
!HPF$ PROCESSORS PROC( P )
!HPF$ TEMPLATE T( N + P*NB )
!HPF$ DISTRIBUTE T( CYCLIC( NB ) ) ONTO PROC
!HPF$ ALIGN X( I ) WITH T( SRC*NB + I )</PRE>
<P>
In the two-dimensional case,
assuming the matrix is partitioned
in <IMG WIDTH=83 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline14817" SRC="img286.gif"> blocks and that
the first block is given to the
process of coordinates (<I>RSRC</I>, <I>CSRC</I>),
the analytical formula given above for
the one-dimensional case are simply
reused independently in each dimension
of the <IMG WIDTH=57 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline12182" SRC="img25.gif"> process grid.
For example, the matrix entry (<I>I</I>,<I>J</I>)
is thus to be found in the process
of coordinates <IMG WIDTH=50 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline14629" SRC="img265.gif"> within
the local (<I>l</I>,<I>m</I>) block at the
position (<I>x</I>,<I>y</I>) given by:
<BR><IMG WIDTH=660 HEIGHT=67 ALIGN=BOTTOM ALT="displaymath14670" SRC="img287.gif"><BR>
<P>
These formula specify how an <IMG WIDTH=38 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14831" SRC="img288.gif">
by <IMG WIDTH=35 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14833" SRC="img289.gif"><A NAME="2480"> </A>
matrix <I>A</I> is mapped and stored on the
process grid. It is first decomposed
into <IMG WIDTH=52 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14837" SRC="img290.gif"> by <IMG WIDTH=49 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14839" SRC="img291.gif"><A NAME="2481"> </A>
blocks starting at its upper left
corner. These blocks are then
uniformly distributed across the
process grid in a cyclic manner.
<P>
Every process owns a collection
of blocks, which are contiguously
stored by column in a two-dimensional
``column major'' array.
<P>
This local storage convention
allows the ScaLAPACK software to
use efficiently the local memory
hierarchy by calling the BLAS on
subarrays that may be larger than
a single <IMG WIDTH=52 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14837" SRC="img290.gif"> by <IMG WIDTH=49 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14839" SRC="img291.gif"> block.
We present in figure <A HREF="node76.html#figmat5">4.5</A><A NAME="2483"> </A>
the mapping of a <TT>5</TT><IMG WIDTH=9 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline14845" SRC="img292.gif"><TT>5</TT>
matrix partitioned into <TT>2</TT><IMG WIDTH=9 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline14845" SRC="img292.gif"><TT>2</TT>
blocks mapped onto a <TT>2</TT><IMG WIDTH=9 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline14845" SRC="img292.gif"><TT>2</TT>
process grid (i.e., <IMG WIDTH=128 HEIGHT=13 ALIGN=BOTTOM ALT="tex2html_wrap_inline14851" SRC="img293.gif">, <IMG WIDTH=91 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline14651" SRC="img270.gif">,
and <IMG WIDTH=156 HEIGHT=12 ALIGN=BOTTOM ALT="tex2html_wrap_inline14855" SRC="img294.gif">). The local entries of
every matrix column are contiguously stored
in the processes' memories.
<P>
<P><A NAME="7961"> </A><IMG WIDTH=460 HEIGHT=199 ALIGN=BOTTOM ALT="figure2490" SRC="img297.gif"><BR>
<STRONG>Figure 4.6:</STRONG> A <IMG WIDTH=37 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline14857" SRC="img295.gif"> matrix decomposed into <IMG WIDTH=37 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline14859" SRC="img296.gif"> <A NAME="figmat5"> </A>
blocks mapped onto a <IMG WIDTH=37 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline14859" SRC="img296.gif"> process grid<BR>
<P>
<P>
In figure <A HREF="node76.html#figmat5">4.5</A>, the process
of coordinates (0,0) owns four blocks.
The matrix entries of the global columns
1, 2 and 5 are contiguously stored in
that process's memory. Finally, these
columns are themselves continuously stored
forming a conventional two-dimensional
local array. In that local array <I>A</I>,
the entry <I>A</I>(2,3) contains the value
of the global matrix entry <IMG WIDTH=21 HEIGHT=17 ALIGN=MIDDLE ALT="tex2html_wrap_inline14869" SRC="img298.gif">.
This example would be expressed in
HPF<A NAME="2496"> </A> as:
<PRE> REAL :: A( 5, 5 )
!HPF$ PROCESSORS PROC( 2, 2 )
!HPF$ DISTRIBUTE A( CYCLIC( 2 ), CYCLIC( 2 ) ) ONTO PROC</PRE>
<P>
Determining the number of
<A NAME="2497"> </A>
<A NAME="2498"> </A>
rows or columns of a global
dense matrix that a specific
process receives is an
essential task for the
user. ScaLAPACK provides
a tool routine, NUMROC,
to perform this function.
The notation LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12112" SRC="img15.gif">()
and LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12114" SRC="img16.gif">() is used
to reflect these local
quantities throughout the
leading comments of the
source code and is reflected
in the sample argument
description in section <A HREF="node79.html#subsecargdesc">4.3.5</A>.
The values of LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12112" SRC="img15.gif">()<A NAME="7962"> </A>
and LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12114" SRC="img16.gif">()<A NAME="7963"> </A> computed
by NUMROC are precise calculations.
<P>
However, if users want a
general idea of the size
of a local array, they can
perform the following ``back
of the envelope'' calculation
to receive an upper bound on
the quantity.
<P>
An upper bound on the value of LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12112" SRC="img15.gif">() can be calculated as:
<BR><IMG WIDTH=434 HEIGHT=57 ALIGN=BOTTOM ALT="displaymath14671" SRC="img299.gif"><BR>
or equivalently as
<BR><IMG WIDTH=406 HEIGHT=18 ALIGN=BOTTOM ALT="displaymath14672" SRC="img300.gif"><BR>
<P>
Similarly, an upper bound on the value of
LOC<IMG WIDTH=6 HEIGHT=7 ALIGN=MIDDLE ALT="tex2html_wrap_inline12114" SRC="img16.gif">() can be calculated as
<BR><IMG WIDTH=429 HEIGHT=57 ALIGN=BOTTOM ALT="displaymath14673" SRC="img301.gif"><BR>
or equivalently as
<BR><IMG WIDTH=401 HEIGHT=18 ALIGN=BOTTOM ALT="displaymath14674" SRC="img302.gif"><BR>
<P>
Note that this calculation can
yield a gross overestimate of
the amount of space actually
required.
<P>
<HR><A NAME="tex2html3134" HREF="node77.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3132" HREF="node74.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3126" HREF="node75.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3136" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3137" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3135" HREF="node77.html">Array Descriptor for In-core </A>
<B>Up:</B> <A NAME="tex2html3133" HREF="node74.html">In-core Dense Matrices</A>
<B> Previous:</B> <A NAME="tex2html3127" HREF="node75.html">The Two-dimensional Block-Cyclic Distribution</A>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>
|