1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<!--Converted with LaTeX2HTML 96.1-h (September 30, 1996) by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds -->
<HTML>
<HEAD>
<TITLE>Eigenvalue Problems</TITLE>
<META NAME="description" CONTENT="Eigenvalue Problems">
<META NAME="keywords" CONTENT="slug">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<LINK REL=STYLESHEET HREF="slug.css">
</HEAD>
<BODY LANG="EN" >
<A NAME="tex2html3695" HREF="node120.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3693" HREF="node117.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3689" HREF="node118.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3697" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3698" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3696" HREF="node120.html">Performance Evaluation</A>
<B>Up:</B> <A NAME="tex2html3694" HREF="node117.html">Solving Linear Systems of </A>
<B> Previous:</B> <A NAME="tex2html3690" HREF="node118.html">Solving Linear Least Squares </A>
<BR> <P>
<H3><A NAME="SECTION04526200000000000000">Eigenvalue Problems</A></H3>
<A NAME="subseceig"> </A>
<P>
ScaLAPACK includes block algorithms for
solving symmetric<A NAME="4024"> </A> and nonsymmetric
eigenvalue problems as well as for computing the singular value
decomposition.
<P>
The first step in solving many types of eigenvalue problems is to reduce
the original matrix to a ``condensed form'' by orthogonal
transformations.
<A NAME="4025"> </A>
<A NAME="4026"> </A>
In the reduction to condensed
forms, the unblocked algorithms
all use elementary Householder
matrices and have good vector
performance. Block forms of
these algorithms have been
developed [<A HREF="node189.html#lawn92">28</A>],
but all require additional
operations, and a significant
proportion of the work must
still be performed by the
Level 2 PBLAS. Thus, there
is less possibility of
compensating for the extra
operations.
<P>
The algorithms concerned are listed below:
<P>
<UL>
<LI> Reduction of a symmetric matrix to tridiagonal
form<A NAME="4029"> </A> to solve a
symmetric eigenvalue problem: ScaLAPACK routine
PSSYTRD<A NAME="4030"> </A>/PDSYTRD<A NAME="4031"> </A>
applies a symmetric block update of the form
<BR><IMG WIDTH=340 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16854" SRC="img404.gif"><BR>
using the Level 3 PBLAS routine PSSYR2K<A NAME="4032"> </A>/PDSYR2K<A NAME="4033"> </A>;
Level 3 PBLAS account for at most half the work.
<LI> Reduction of a rectangular matrix to bidiagonal
form<A NAME="4034"> </A> to compute a singular
value decomposition: ScaLAPACK routine PSGEBRD
<A NAME="4035"> </A>/PDGEBRD<A NAME="4036"> </A> applies
a block update of the form
<BR><IMG WIDTH=339 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16855" SRC="img405.gif"><BR>
using two calls to the Level 3 PBLAS routine PSGEMM/PDGEMM;
Level 3 PBLAS account for at most half the work.
<LI> Reduction of a nonsymmetric matrix to Hessenberg
form<A NAME="4037"> </A><A NAME="4038"> </A>
to solve a nonsymmetric eigenvalue problem: ScaLAPACK routine
PSGEHRD<A NAME="4039"> </A>/PDGEHRD<A NAME="4040"> </A> applies a
block update of the form
<BR><IMG WIDTH=369 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16856" SRC="img406.gif"><BR>
Level 3 PBLAS account for at most three-quarters of the work.
<P>
</UL>
<P>
Extra work must be performed
to compute the <I>N</I>-by-<I>K</I>
matrices <I>X</I> and <I>Y</I> that
are required for the block
updates (<I>K</I> is the block
size), and extra workspace
is needed to store them.
<P>
Following the
reduction of
a dense symmetric matrix
to tridiagonal
form <I>T</I>, one
must compute the
eigenvalues and
(optionally)
eigenvectors
of <I>T</I>. The
current version
of ScaLAPACK
includes two
different
routines
PSSYEVX<A NAME="4042"> </A>/PDSYEVX<A NAME="4043"> </A>
and PSSYEV<A NAME="4044"> </A>/PDSYEV<A NAME="4045"> </A>
for solving symmetric
eigenproblems.
PSSYEVX/PDSYEVX
uses bisection and
inverse iteration.
PSSYEV/PDSYEV
uses the <I>QR</I> algorithm.
Table <A HREF="node119.html#tabevxperf">5.12</A><A NAME="4047"> </A>
and Table <A HREF="node119.html#tabevperf">5.13</A><A NAME="4049"> </A>
show the execution time
in seconds of the routines
PSSYEVX/PDSYEVX and
PSSYEV<A NAME="4050"> </A>/PDSYEV<A NAME="4051"> </A>,
respectively,
for computing the
eigenvalues and
eigenvectors of
symmetric matrices
of order <I>N</I>.
The performance of PSSYEVX<A NAME="4052"> </A>/PDSYEVX<A NAME="4053"> </A>
deteriorates in the face of large clusters of eigenvalues.
ScaLAPACK uses a nonscalable definition of clusters (because
we chose to remain consistent with LAPACK). Hence, matrices
larger than <I>N</I>=1000 tend to have at least one very large cluster
(see section <A HREF="node126.html#subsecperfsyevx">5.3.6</A>). This needs further study.
More
detailed information
concerning the performance
of these routines may be
found in [<A HREF="node189.html#lawn86">40</A>].
Table <A HREF="node119.html#tabsvdperf">5.14</A><A NAME="4057"> </A>
shows the execution time
in seconds of the routines
PSGESVD<A NAME="4058"> </A>/PDGESVD<A NAME="4059"> </A>
for computing the
singular values and
the corresponding
right and left
singular vectors
of a general matrix
of order <I>N</I>.
<P>
<P><A NAME="4061"> </A><A NAME="tabevxperf"> </A><IMG WIDTH=747 HEIGHT=584 ALIGN=BOTTOM ALT="table4060" SRC="img407.gif"><BR>
<STRONG>Table 5.12:</STRONG> Execution time in seconds of
PSSYEVX/PDSYEVX for square
matrices of order <I>N</I><BR>
<P>
For computing the eigenvalues and eigenvectors of a Hessenberg
matrix--or rather, for computing its Schur factorization--
two flavors of block algorithms have been developed. The first
algorithm implemented in the routine
PSLAHQR<A NAME="4081"> </A>/PDLAHQR<A NAME="4082"> </A>
results from the parallelization of the <I>QR</I> algorithm.
The key idea is to generate many shifts at once rather than two
at a time, thereby allowing all bulges to carry out up-to-date
shifts. The second algorithm that is currently implemented as a
prototype code<A NAME="4083"> </A>
is based on the computation of the matrix sign function
[<A HREF="node189.html#baidemmel92a">14</A>, <A HREF="node189.html#lawn91">13</A>, <A HREF="node189.html#baidemmel97">12</A>].
In this section, however, only performance results of the
first approach are reported.
<P><A NAME="4086"> </A><A NAME="tabevperf"> </A><IMG WIDTH=747 HEIGHT=584 ALIGN=BOTTOM ALT="table4085" SRC="img408.gif"><BR>
<STRONG>Table 5.13:</STRONG> Execution time in seconds of
PSSYEV/PDSYEV for square
matrices of order <I>N</I><BR>
<P>
<P><A NAME="4107"> </A><A NAME="tabsvdperf"> </A><IMG WIDTH=747 HEIGHT=483 ALIGN=BOTTOM ALT="table4106" SRC="img409.gif"><BR>
<STRONG>Table 5.14:</STRONG> Execution time in seconds of
PSGESVD/PDGESVD for square
matrices of order <I>N</I><BR>
<P>
Table <A HREF="node119.html#tabpdlahqr">5.15</A><A NAME="4127"> </A>
summarizes performance results obtained for the ScaLAPACK
routine PDLAHQR doing a full Schur decomposition of an
order <I>N</I> upper Hessenberg matrix. The supercomputers
the table gives timings for are the Intel XP/S MP Paragon
supercomputer and technology from the Intel ASCI Option Red
Supercomputer. For both machines, we assume only one CPU
is being used for computation on this code.
The Schur decomposition is based on iteratively
applying orthogonal similarity transformations on a Hessenberg matrix
<I>H</I> such as
<BR><IMG WIDTH=294 HEIGHT=21 ALIGN=BOTTOM ALT="displaymath16857" SRC="img410.gif"><BR>
until <I>T</I> becomes pseudo-upper triangular (i.e., in the real case,
having one by one or two by two subdiagonal blocks.)
The serial performance (assuming roughly <IMG WIDTH=38 HEIGHT=16 ALIGN=BOTTOM ALT="tex2html_wrap_inline16994" SRC="img411.gif"> flops) of the LAPACK
routine DLAHQR for computing a complex Schur decomposition is around
8.5 Mflops on the Intel MP Paragon supercomputer. The enhanced performance
shown in Table <A HREF="node119.html#tabpdlahqr">5.15</A> is slightly faster, a bit above 9 Mflops,
and ends up peaking around 10 Mflops because of the block application
of Householder transforms found in the ScaLAPACK serial auxiliary
routine DLAREF. For the technology behind the Intel ASCI Option Red
Supercomputer, it peaks at several times the speed of the Paragon, and has
a slightly faster drop off in efficiency. For further details and timings,
please see [<A HREF="node189.html#lawn121">79</A>].
<P><A NAME="4131"> </A><A NAME="tabpdlahqr"> </A><IMG WIDTH=746 HEIGHT=325 ALIGN=BOTTOM ALT="table4130" SRC="img412.gif"><BR>
<STRONG>Table 5.15:</STRONG> Execution time in seconds of
PDLAHQR for square
matrices of order <I>N</I><BR>
<P>
A more detailed performance analysis of the eigensolvers
included in the ScaLAPACK software library can be found
in [<A HREF="node189.html#henry97a">48</A>, <A HREF="node189.html#lawn121">79</A>].
Finally, we note that research into parallel algorithms
for symmetric and nonsymmetric eigenproblems continues
[<A HREF="node189.html#bai92a">11</A>, <A HREF="node189.html#huss93a">86</A>, <A HREF="node189.html#dhillonparlett97">45</A>],
and future versions of ScaLAPACK will be updated
to contain the best algorithms available.
<P>
<HR><A NAME="tex2html3695" HREF="node120.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="http://www.netlib.org/utk/icons/next_motif.gif"></A> <A NAME="tex2html3693" HREF="node117.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="http://www.netlib.org/utk/icons/up_motif.gif"></A> <A NAME="tex2html3689" HREF="node118.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="http://www.netlib.org/utk/icons/previous_motif.gif"></A> <A NAME="tex2html3697" HREF="node1.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="http://www.netlib.org/utk/icons/contents_motif.gif"></A> <A NAME="tex2html3698" HREF="node190.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="http://www.netlib.org/utk/icons/index_motif.gif"></A> <BR>
<B> Next:</B> <A NAME="tex2html3696" HREF="node120.html">Performance Evaluation</A>
<B>Up:</B> <A NAME="tex2html3694" HREF="node117.html">Solving Linear Systems of </A>
<B> Previous:</B> <A NAME="tex2html3690" HREF="node118.html">Solving Linear Least Squares </A>
<P><ADDRESS>
<I>Susan Blackford <BR>
Tue May 13 09:21:01 EDT 1997</I>
</ADDRESS>
</BODY>
</HTML>
|