1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
SUBROUTINE PBCGERC( ICONTXT, XDIST, YDIST, M, N, MB, NB, MZ, NZ,
$ ALPHA, X, INCX, Y, INCY, A, LDA, IXROW, IXCOL,
$ IYROW, IYCOL, IAROW, IACOL, BR1ST, XCOMM,
$ XWORK, YCOMM, YWORK, WORK )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* Jaeyoung Choi, Oak Ridge National Laboratory
* Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
* David Walker, Oak Ridge National Laboratory
*
* .. Scalar Arguments ..
CHARACTER*1 BR1ST, XCOMM, XDIST, XWORK, YCOMM, YDIST,
$ YWORK
INTEGER IACOL, IAROW, ICONTXT, INCX, INCY, IXCOL,
$ IXROW, IYCOL, IYROW, LDA, M, MB, MZ, N, NB, NZ
COMPLEX ALPHA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), X( * ), Y( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PBCGERC is a parallel blocked version of CGERC.
* PBCGERC performs one of the matrix-vector operations based on
* block cyclic distribution.
*
* PBCGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, X is an m element vector, Y is an n element
* vector and A is an m-by-n matrix.
*
* Parameters
* ==========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* XDIST (input) CHARACTER*1
* XDIST specifies the distribution of vector X as follows:
*
* XDIST = 'C', X is distributed columnwise
* or on a column of processes
* XDIST = 'R', X is distributed rowwise
* or on a row of processes
*
* YDIST (input) CHARACTER*1
* YDIST specifies the distribution of vector Y as follows:
*
* YDIST = 'C', Y is distributed columnwise
* or on a column of processes
* YDIST = 'R', Y is distributed rowwise
* or on a row of processes
*
* M (input) INTEGER
* M specifies the number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* N specifies the number of columns of the matrix A. N >= 0.
*
* MB (input) INTEGER
* MB specifies the column block size of the matrix A and the
* block size of the vector X. MB >= 1.
*
* NB (input) INTEGER
* MB specifies the row block size of the matrix A and the
* block size of the vector Y. NB >= 1.
*
* MZ (input) INTEGER
* MZ is the column offset to specify the column distance from
* the beginning of the block to the the first element of A.
* 0 <= MZ < MB.
*
* NZ (input) INTEGER
* NZ is the row offset to specify the row distance from the
* beginning of the block to the the first element of A.
* 0 <= NZ < NB.
*
* ALPHA (input) COMPLEX
* ALPHA specifies the scalar alpha.
*
* X (input) COMPLEX array of DIMENSION at least
* ( 1 + ( Mp - 1 )*abs( INCX ) ) if XDIST = 'C', or
* ( 1 + ( Mq - 1 )*abs( INCX ) ) if XDIST = 'R'.
* The incremented array X must contain the (local) vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* Y (input/output) COMPLEX array of DIMENSION at least
* ( 1 + ( Np - 1 )*abs( INCY ) ) if YDIST = 'C', or.
* ( 1 + ( Nq - 1 )*abs( INCY ) ) if YDIST = 'R'.
* The incremented array Y must contain the (local) vector Y.
*
* INCY (input) INTEGER
* INCY specifies the increment for the elements of Y.
* INCY <> 0.
*
* A (input/output) COMPLEX array of DIMENSION ( LDA, Nq ),
* On entry, the leading Mp-by-Nq part of the array must
* contain the (local) matrix A.
* On exit, A is overwritten by the updated matrix.
*
* LDA (input) INTEGER
* The leading dimension of the (local) array A.
* LDA >= max( 1, Mp ).
*
* IXROW (input) INTEGER
* IXROW specifies a row of the process template which has
* the first element of X. 0 <= IXROW < NPROW. If all rows
* of the process template have their own copies of X when
* XDIST = 'R', then set IXROW = -1.
*
* IXCOL (input) INTEGER
* IXCOL specifies a column of the process template which has
* the first element of X. 0 <= IXCOL < NPCOL. If all columns
* of the process template have their own copies of X when
* XDIST = 'C', then set IXCOL = -1.
*
* IYROW (input) INTEGER
* IYROW specifies a row of the process template which has
* the first element of Y. 0 <= IYROW < NPROW. If all rows
* of the process template have their own copies of Y when
* YDIST = 'R', then set IYROW = -1.
*
* IYCOL (input) INTEGER
* IYCOL specifies a column of the process template which has
* the first element of Y. 0 <= IYCOL < NPCOL. If all columns
* of the process template have their own copies of Y when
* YDIST = 'C', then set IYCOL = -1.
*
* IAROW (input) INTEGER
* The process row that has the first block of A.
* 0 <= IAROW < NPROW.
*
* IACOL (input) INTEGER
* The process column that has the first block of A.
* 0 <= IACOL < NPCOL.
*
* BR1ST (input) CHARACTER*1
* BR1ST determines which vector needs to be broadcast first,
* X or Y, when IXCOL >= 0, and IYROW >= 0.
*
* BR1ST = 'X': X is broadcast first,
* BR1ST = 'Y': Y is broadcast first.
*
* XCOMM (input) CHARACTER*1
* XCOMM specifies the communication scheme of X if XDIST = 'C'.
* It follows topology definition of BLACS.
*
* XWORK (input) CHARACTER*1
* XWORK determines whether X is a workspace or not.
*
* XWORK = 'Y': X is workspace in other processes.
* X is sent to X position in other processes.
* It is assumed that processes have
* sufficient space to store (local) X.
* XWORK = 'N': Data of X in other processes will be
* untouched (unchanged).
*
* YCOMM (input) CHARACTER*1
* YCOMM specifies the columnwise communication scheme of Y.
* It follows topology definition of BLACS.
*
* YWORK (input) CHARACTER*1
* YWORK determines whether Y is a workspace or not.
*
* YWORK = 'Y': Y is workspace in other processes.
* Y is sent to Y position in other processes.
* It is assumed that processes have
* sufficient space to store (local) Y.
* YWORK = 'N': Data of Y in other processes will be
* untouched (unchanged).
*
* WORK (workspace) COMPLEX array of DIMENSION Size(WORK)
* It will store copy of X and/or copy of Y. (see requirements)
*
* Memory Requirement of WORK
* ==========================
*
* MM = M + MZ
* NN = N + NZ
* Mpb = CEIL( MM, MB*NPROW )
* Nqb = CEIL( NN, NB*NPCOL )
* Mp0 = NUMROC( MM, MB, 0, 0, NPROW ) ~= Mpb * MB
* Nq0 = NUMROC( NN, NB, 0, 0, NPCOL ) ~= Nqb * NB
* LCMQ = LCM / NPCOL
* LCMP = LCM / NPROW
*
* (1) XDIST='C' & YDIST = 'C'
* Size(WORK) = Nq0
* + Mp0 (if IXCOL <> -1 & XWORK <> 'Y')
* + MAX[ CEIL(Nqb,LCMQ)*NB (if IYCOL <> -1),
* CEIL(Nqb,LCMQ)*NB*MIN(LCMQ,CEIL(NN,NB))
* (if IYCOL = -1) ]
*
* (2) XDIST='C' & YDIST = 'R'
* Size(WORK) = Mp0 (if IXCOL <> -1 & XWORK <> 'Y')
* + Nq0 (if IYROW <> -1 & YWORK <> 'Y')
*
* (3) XDIST='R' & YDIST = 'C'
* Size(WORK) = Mp0 + Nq0
* + MAX[ CEIL(Mpb,LCMP)*MB (if IXROW <> -1),
* CEIL(Mpb,LCMP)*MB*MIN(LCMP,CEIL(MM,MB))
* (if IXROW = -1) ]
* + MAX[ CEIL(Nqb,LCMQ)*NB (if IYCOL <> -1),
* CEIL(Nqb,LCMQ)*NB*MIN(LCMQ,CEIL(NN,NB))
* (if IYCOL = -1) ]
*
* (4) XDIST='R' & YDIST = 'R'
* Size(WORK) = Mp0 + Nq0
* + Nq0 (if IYROW <> -1 & YWORK <> 'Y')
* + MAX[ CEIL(Mpb,LCMP)*MB (if IXROW <> -1),
* CEIL(Mpb,LCMP)*MB*MIN(LCMP,CEIL(MM,MB))
* (if IXROW = -1) ]
*
* Notes
* -----
* More precise space can be computed as
*
* CEIL(Mpb,LCMP)*MB => NUMROC( NUMROC(MM,MB,0,0,NPROW), MB, 0, 0, LCMP)
* = NUMROC( Mp0, MB, 0, 0, LCMP )
* CEIL(Nqb,LCMQ)*NB => NUMROC( NUMROC(NN,NB,0,0,NPCOL), NB, 0, 0, LCMQ)
* = NUMROC( Nq0, NB, 0, 0, LCMQ )
*
* =====================================================================
*
* ..
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
CHARACTER*1 COMMX, COMMY
LOGICAL XCOL, XDATA, YCOL, YDATA
INTEGER INFO, IPX, IPY, MP, MYCOL, MYROW, NPCOL, NPROW,
$ NQ
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER NUMROC
EXTERNAL LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, CGEBR2D, CGEBS2D, CGERC,
$ PBCTRNV, PBCVECADD, PXERBLA
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
$ RETURN
*
CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
XCOL = LSAME( XDIST, 'C' )
YCOL = LSAME( YDIST, 'C' )
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.XCOL .AND. .NOT.LSAME( XDIST, 'R' ) ) THEN
INFO = 2
ELSE IF( .NOT.YCOL .AND. .NOT.LSAME( YDIST, 'R' ) ) THEN
INFO = 3
ELSE IF( M .LT.0 ) THEN
INFO = 4
ELSE IF( N .LT.0 ) THEN
INFO = 5
ELSE IF( MB .LT.1 ) THEN
INFO = 6
ELSE IF( NB .LT.1 ) THEN
INFO = 7
ELSE IF( MZ .LT.0 .OR. MZ .GE. MB ) THEN
INFO = 8
ELSE IF( NZ .LT.0 .OR. NZ .GE. NB ) THEN
INFO = 9
ELSE IF( INCX.EQ.0 ) THEN
INFO = 12
ELSE IF( INCY.EQ.0 ) THEN
INFO = 14
ELSE IF( IAROW.LT.0 .OR. IAROW.GE.NPROW ) THEN
INFO = 21
ELSE IF( IACOL.LT.0 .OR. IACOL.GE.NPCOL ) THEN
INFO = 22
END IF
*
10 CONTINUE
IF( INFO .NE. 0 ) THEN
CALL PXERBLA( ICONTXT, 'PBCGERC ', INFO )
RETURN
END IF
*
* Initialize parameters
*
MP = NUMROC( M+MZ, MB, MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW ) MP = MP - MZ
NQ = NUMROC( N+NZ, NB, MYCOL, IACOL, NPCOL )
IF( MYCOL.EQ.IACOL ) NQ = NQ - NZ
COMMX = XCOMM
IF( LSAME( COMMX, ' ' ) ) COMMX = '1'
COMMY = YCOMM
IF( LSAME( COMMY, ' ' ) ) COMMY = '1'
*
IF( LDA.LT.MAX(1,MP) ) INFO = 16
*
XDATA = .FALSE.
YDATA = .FALSE.
* ___________ ___________
* | | || | |
* | | || | |
* | | || ___________ | |
* | A | = alpha * |X * -----Y----- + | A |
* | | || | |
* | | || | |
* |___________| || |___________|
*
* Broadcast Y columnwise first, then X rowwise
*
IPX = 1
IPY = 1
*
IF( LSAME( BR1ST, 'Y' ) ) THEN
*
* Broadcast Y to Y or WORK if necessary ( IYROW <> -1 )
*
IF( YCOL ) THEN
IF( IYROW.LT. 0 .OR. IYROW.GE.NPROW ) THEN
INFO = 19
ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL ) THEN
INFO = 20
END IF
*
IPX = NQ + 1
CALL PBCTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, Y, INCY, ZERO,
$ WORK(IPY), 1, IYROW, IYCOL, -1, IACOL,
$ WORK(IPX) )
*
ELSE
IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW ) THEN
INFO = 19
ELSE IF( IYCOL.NE.IACOL ) THEN
INFO = 20
END IF
*
IF( IYROW.EQ.-1 ) YDATA = .TRUE.
IF( .NOT.YDATA ) THEN
IF( LSAME( YWORK, 'Y' ) ) THEN
IF( MYROW.EQ.IYROW ) THEN
CALL CGEBS2D( ICONTXT, 'Col', COMMY, 1, NQ, Y, INCY )
ELSE
CALL CGEBR2D( ICONTXT, 'Col', COMMY, 1, NQ, Y, INCY,
$ IYROW, MYCOL )
END IF
YDATA = .TRUE.
ELSE
IF( MYROW.EQ.IYROW ) THEN
CALL PBCVECADD( ICONTXT, 'V', NQ, ONE, Y, INCY, ZERO,
$ WORK(IPY), 1 )
CALL CGEBS2D( ICONTXT, 'Col', COMMY, 1, NQ,
$ WORK(IPY), 1 )
ELSE
CALL CGEBR2D( ICONTXT, 'Col', COMMY, 1, NQ,
$ WORK(IPY), 1, IYROW, MYCOL )
END IF
IPX = NQ + 1
END IF
END IF
END IF
*
* Broadcast X to X or WORK if necessary ( IXCOL <> -1 )
*
IF( XCOL ) THEN
IF( IXROW.NE.IAROW ) THEN
INFO = 17
ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 18
END IF
IF( IXCOL.EQ.-1 ) XDATA = .TRUE.
*
IF( .NOT.XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYCOL.EQ.IXCOL ) THEN
CALL CGEBS2D( ICONTXT, 'Row', COMMX, 1, MP, X, INCX )
ELSE
CALL CGEBR2D( ICONTXT, 'Row', COMMX, 1, MP, X, INCX,
$ MYROW, IXCOL )
END IF
XDATA = .TRUE.
ELSE
IF( MYCOL.EQ.IXCOL ) THEN
CALL PBCVECADD( ICONTXT, 'V', MP, ONE, X, INCX, ZERO,
$ WORK(IPX), 1 )
CALL CGEBS2D( ICONTXT, 'Row', COMMX, 1, MP,
$ WORK(IPX), 1 )
ELSE
CALL CGEBR2D( ICONTXT, 'Row', COMMX, 1, MP,
$ WORK(IPX), 1, MYROW, IXCOL )
END IF
END IF
END IF
*
ELSE
IF( IXROW.LT.-1 .OR. IXROW.GE.NPROW ) THEN
INFO = 17
ELSE IF( IXCOL.LT. 0 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 18
END IF
*
CALL PBCTRNV( ICONTXT, 'Row', 'T', M, MB, MZ, X, INCX, ZERO,
$ WORK(IPX), 1, IXROW, IXCOL, IAROW, -1,
$ WORK(MP+IPX) )
END IF
*
* Broadcast X rowwise first, then Y columnwise
*
ELSE
*
* Broadcast X to X or WORK if necessary ( IXCOL <> -1 )
*
IF( XCOL ) THEN
IF( IXROW.NE.IAROW ) THEN
INFO = 17
ELSE IF( IXCOL.LT.-1 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 18
END IF
IF( IXCOL.EQ.-1 ) XDATA = .TRUE.
*
IF( .NOT.XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYCOL.EQ.IXCOL ) THEN
CALL CGEBS2D( ICONTXT, 'Row', COMMX, 1, MP, X, INCX )
ELSE
CALL CGEBR2D( ICONTXT, 'Row', COMMX, 1, MP, X, INCX,
$ MYROW, IXCOL )
END IF
XDATA = .TRUE.
ELSE
IF( MYCOL.EQ.IXCOL ) THEN
CALL PBCVECADD( ICONTXT, 'V', MP, ONE, X, INCX, ZERO,
$ WORK(IPX), 1 )
CALL CGEBS2D( ICONTXT, 'Row', COMMX, 1, MP,
$ WORK(IPX), 1 )
ELSE
CALL CGEBR2D( ICONTXT, 'Row', COMMX, 1, MP,
$ WORK(IPX), 1, MYROW, IXCOL )
END IF
IPY = MP + 1
END IF
END IF
ELSE
IF( IXROW.LT.-1 .OR. IXROW.GE.NPROW ) THEN
INFO = 17
ELSE IF( IXCOL.LT. 0 .OR. IXCOL.GE.NPCOL ) THEN
INFO = 18
END IF
*
IPY = MP + 1
CALL PBCTRNV( ICONTXT, 'Row', 'T', M, MB, MZ, X, INCX, ZERO,
$ WORK(IPX), 1, IXROW, IXCOL, IAROW, -1,
$ WORK(IPY) )
END IF
*
* Broadcast Y to Y or WORK if necessary ( IYROW <> -1 )
*
IF( YCOL ) THEN
IF( IYROW.LT. 0 .OR. IYROW.GE.NPROW ) THEN
INFO = 19
ELSE IF( IYCOL.LT.-1 .OR. IYCOL.GE.NPCOL ) THEN
INFO = 20
END IF
*
CALL PBCTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, Y, INCY, ZERO,
$ WORK(IPY), 1, IYROW, IYCOL, -1, IACOL,
$ WORK(IPY+NQ) )
*
ELSE
IF( IYROW.LT.-1 .OR. IYROW.GE.NPROW ) THEN
INFO = 19
ELSE IF( IYCOL.NE.IACOL ) THEN
INFO = 20
END IF
*
IF( IYROW.EQ.-1 ) YDATA = .TRUE.
IF( .NOT.YDATA ) THEN
IF( LSAME( YWORK, 'Y' ) ) THEN
IF( MYROW.EQ.IYROW ) THEN
CALL CGEBS2D( ICONTXT, 'Col', COMMY, 1, NQ, Y, INCY )
ELSE
CALL CGEBR2D( ICONTXT, 'Col', COMMY, 1, NQ, Y, INCY,
$ IYROW, MYCOL )
END IF
YDATA = .TRUE.
ELSE
IF( MYROW.EQ.IYROW ) THEN
CALL PBCVECADD( ICONTXT, 'V', NQ, ONE, Y, INCY, ZERO,
$ WORK(IPY), 1 )
CALL CGEBS2D( ICONTXT, 'Col', COMMY, 1, NQ,
$ WORK(IPY), 1 )
ELSE
CALL CGEBR2D( ICONTXT, 'Col', COMMY, 1, NQ,
$ WORK(IPY), 1, IYROW, MYCOL )
END IF
END IF
END IF
END IF
END IF
*
IF( INFO.NE.0 ) GO TO 10
*
* Compute A
*
IF( XDATA ) THEN
IF( YDATA ) THEN
CALL CGERC( MP, NQ, ALPHA, X, INCX, Y, INCY, A, LDA )
ELSE
CALL CGERC( MP, NQ, ALPHA, X, INCX, WORK(IPY), 1, A, LDA )
END IF
ELSE
IF( YDATA ) THEN
CALL CGERC( MP, NQ, ALPHA, WORK(IPX), 1, Y, INCY, A, LDA )
ELSE
CALL CGERC( MP, NQ, ALPHA, WORK(IPX), 1, WORK(IPY), 1,
$ A, LDA )
END IF
END IF
*
RETURN
*
* End of PBCGERC
*
END
|