1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
SUBROUTINE PBCLACP1( ICONTXT, UPLO, FORM, DIAG, M, N, NZ, A, LDA,
$ B, LDB, MINT, NINT, MEN, NEN )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 UPLO, FORM, DIAG
INTEGER ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT,
$ NZ
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBCLACP1 copies part of a two-dimensional upper (or lower) triangular
* matrix A to another matrix B with forced zeros in the other part.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT
INTEGER I, J, JJ, JP, KZ, MN, MX
COMPLEX DUMMY
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, PBCMATADD, PBCVECADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
NOUNIT = LSAME( DIAG, 'N' )
JP = 0
MN = M
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is upper triangular
*
DO 10 J = 1, MIN( N-NZ, NEN-JP )
JJ = JP + J
MX = MN + J
IF( NOUNIT ) THEN
CALL CCOPY( MX, A( 1, JJ ), 1, B( 1, JJ ), 1 )
ELSE
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
10 CONTINUE
MN = MN + MINT - NZ
JP = JP + NINT - NZ
*
DO 30 I = 2, ICEIL( NEN+NZ, NINT )
DO 20 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
IF( NOUNIT ) THEN
CALL CCOPY( MX, A( 1, JJ ), 1, B( 1, JJ ), 1 )
ELSE
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
20 CONTINUE
MN = MN + MINT
JP = JP + NINT
30 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is upper triangular Hermitian
*
DO 40 J = 1, MIN( N-NZ, NEN-JP )
JJ = JP + J
MX = MN + J
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX, JJ ) = REAL( A( MX, JJ ) )
ELSE
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
40 CONTINUE
MN = MN + MINT - NZ
JP = JP + NINT - NZ
*
DO 60 I = 2, ICEIL( NEN+NZ, NINT )
DO 50 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX, JJ ) = REAL( A( MX, JJ ) )
ELSE
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
50 CONTINUE
MN = MN + MINT
JP = JP + NINT
60 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
KZ = NZ
DO 70 I = 1, ICEIL( NEN+NZ, NINT )
MX = MIN( N-KZ, NEN-JP )
CALL PBCMATADD( ICONTXT, 'V', MN, MX, ONE, A( 1, JP+1 ),
$ LDA, ZERO, B( 1, JP+1 ), LDB )
CALL PBCMATADD( ICONTXT, 'G', MEN-MN, MX, ZERO, DUMMY, 1,
$ ZERO, B( MN+1, JP+1 ), LDB )
MN = MN + MINT
JP = JP + NINT - KZ
KZ = 0
70 CONTINUE
END IF
*
ELSE
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is lower triangular
*
MN = M - 1
DO 80 J = 1, MIN( N-NZ, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1, ZERO,
$ B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
CALL CCOPY( MEN-MX, A( MX+1, JJ ), 1, B( MX+1, JJ ),
$ 1 )
ELSE
B( MX+1, JJ ) = ONE
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ),1, B( MX+2, JJ ),
$ 1 )
END IF
80 CONTINUE
MN = MN + MINT - NZ
JP = JP + NINT - NZ
*
DO 100 I = 2, ICEIL( NEN+NZ, NINT )
DO 90 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
CALL CCOPY( MEN-MX, A( MX+1, JJ ), 1,
$ B( MX+1, JJ ), 1 )
ELSE
B( MX+1, JJ ) = ONE
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1,
$ B( MX+2, JJ ), 1 )
END IF
90 CONTINUE
MN = MN + MINT
JP = JP + NINT
100 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is lower triangular Hermitian
*
MN = M - 1
DO 110 J = 1, MIN( N-NZ, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1, ZERO,
$ B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX+1, JJ ) = REAL( A( MX+1, JJ ) )
ELSE
B( MX+1, JJ ) = ONE
END IF
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ),1, B( MX+2, JJ ), 1 )
110 CONTINUE
MN = MN + MINT - NZ
JP = JP + NINT - NZ
*
DO 130 I = 2, ICEIL( NEN+NZ, NINT )
DO 120 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX+1, JJ ) = REAL( A( MX+1, JJ ) )
ELSE
B( MX+1, JJ ) = ONE
END IF
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1, B( MX+2, JJ ),
$ 1 )
120 CONTINUE
MN = MN + MINT
JP = JP + NINT
130 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
KZ = NZ
DO 140 I = 1, ICEIL( NEN+NZ, NINT )
MX = MIN( N-KZ, NEN-JP )
CALL PBCMATADD( ICONTXT, 'G', MN, MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JP+1 ), LDB )
CALL PBCMATADD( ICONTXT, 'V', MEN-MN, MX, ONE,
$ A( MN+1, JP+1 ), LDA, ZERO,
$ B( MN+1, JP+1 ), LDB )
MN = MN + MINT
JP = JP + NINT - KZ
KZ = 0
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBCLACP1
*
END
|