File: pbclacp1.f

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (247 lines) | stat: -rw-r--r-- 8,121 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
      SUBROUTINE PBCLACP1( ICONTXT, UPLO, FORM, DIAG, M, N, NZ, A, LDA,
     $                     B, LDB, MINT, NINT, MEN, NEN )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER*1        UPLO, FORM, DIAG
      INTEGER            ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT,
     $                   NZ
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PBCLACP1 copies part of a two-dimensional upper (or lower) triangular
*  matrix A to another matrix B with forced zeros in the other part.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, ZERO
      PARAMETER          ( ONE  = ( 1.0E+0, 0.0E+0 ),
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            NOUNIT
      INTEGER            I, J, JJ, JP, KZ, MN, MX
      COMPLEX            DUMMY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL
      EXTERNAL           ICEIL, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, PBCMATADD, PBCVECADD
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, REAL
*     ..
*     .. Executable Statements ..
*
      NOUNIT = LSAME( DIAG, 'N' )
      JP = 0
      MN = M
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
         IF( LSAME( FORM, 'T' ) ) THEN
*
*           A is upper triangular
*
            DO 10 J = 1, MIN( N-NZ, NEN-JP )
               JJ = JP + J
               MX = MN + J
               IF( NOUNIT ) THEN
                  CALL CCOPY( MX, A( 1, JJ ), 1, B( 1, JJ ), 1 )
               ELSE
                  CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
                  B( MX, JJ ) = ONE
               END IF
               CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
     $                         ZERO, B( MX+1, JJ ), 1 )
   10       CONTINUE
            MN = MN + MINT - NZ
            JP = JP + NINT - NZ
*
            DO 30 I = 2, ICEIL( NEN+NZ, NINT )
               DO 20 J = 1, MIN( N, NEN-JP )
                  JJ = JP + J
                  MX = MN + J
                  IF( NOUNIT ) THEN
                     CALL CCOPY( MX, A( 1, JJ ), 1, B( 1, JJ ), 1 )
                  ELSE
                     CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
                     B( MX, JJ ) = ONE
                  END IF
                  CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
     $                            ZERO, B( MX+1, JJ ), 1 )
   20          CONTINUE
               MN = MN + MINT
               JP = JP + NINT
   30       CONTINUE
*
         ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
*           A is upper triangular Hermitian
*
            DO 40 J = 1, MIN( N-NZ, NEN-JP )
               JJ = JP + J
               MX = MN + J
               CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
               IF( NOUNIT ) THEN
                  B( MX, JJ ) = REAL( A( MX, JJ ) )
               ELSE
                  B( MX, JJ ) = ONE
               END IF
               CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
     $                         ZERO, B( MX+1, JJ ), 1 )
   40       CONTINUE
            MN = MN + MINT - NZ
            JP = JP + NINT - NZ
*
            DO 60 I = 2, ICEIL( NEN+NZ, NINT )
               DO 50 J = 1, MIN( N, NEN-JP )
                  JJ = JP + J
                  MX = MN + J
                  CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
                  IF( NOUNIT ) THEN
                     B( MX, JJ ) = REAL( A( MX, JJ ) )
                  ELSE
                     B( MX, JJ ) = ONE
                  END IF
                  CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
     $                            ZERO, B( MX+1, JJ ), 1 )
   50          CONTINUE
               MN = MN + MINT
               JP = JP + NINT
   60       CONTINUE
*
         ELSE
*
*           A is a rectangular matrix
*
            KZ = NZ
            DO 70 I = 1, ICEIL( NEN+NZ, NINT )
               MX = MIN( N-KZ, NEN-JP )
               CALL PBCMATADD( ICONTXT, 'V', MN, MX, ONE, A( 1, JP+1 ),
     $                         LDA, ZERO, B( 1, JP+1 ), LDB )
               CALL PBCMATADD( ICONTXT, 'G', MEN-MN, MX, ZERO, DUMMY, 1,
     $                         ZERO, B( MN+1, JP+1 ), LDB )
               MN = MN + MINT
               JP = JP + NINT - KZ
               KZ = 0
   70       CONTINUE
         END IF
*
      ELSE
*
         IF( LSAME( FORM, 'T' ) ) THEN
*
*           A is lower triangular
*
            MN = M - 1
            DO 80 J = 1, MIN( N-NZ, NEN-JP )
               JJ = JP + J
               MX = MN + J
               CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1, ZERO,
     $                         B( 1, JJ ), 1 )
               IF( NOUNIT ) THEN
                  CALL CCOPY( MEN-MX, A( MX+1, JJ ), 1, B( MX+1, JJ ),
     $                        1 )
               ELSE
                  B( MX+1, JJ ) = ONE
                  CALL CCOPY( MEN-MX-1, A( MX+2, JJ ),1, B( MX+2, JJ ),
     $                        1 )
               END IF
   80       CONTINUE
            MN = MN + MINT - NZ
            JP = JP + NINT - NZ
*
            DO 100 I = 2, ICEIL( NEN+NZ, NINT )
               DO 90 J = 1, MIN( N, NEN-JP )
                  JJ = JP + J
                  MX = MN + J
                  CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
     $                            ZERO, B( 1, JJ ), 1 )
                  IF( NOUNIT ) THEN
                     CALL CCOPY( MEN-MX, A( MX+1, JJ ), 1,
     $                           B( MX+1, JJ ), 1 )
                  ELSE
                     B( MX+1, JJ ) = ONE
                     CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1,
     $                           B( MX+2, JJ ), 1 )
                  END IF
   90          CONTINUE
               MN = MN + MINT
               JP = JP + NINT
  100       CONTINUE
*
         ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
*           A is lower triangular Hermitian
*
            MN = M - 1
            DO 110 J = 1, MIN( N-NZ, NEN-JP )
               JJ = JP + J
               MX = MN + J
               CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1, ZERO,
     $                         B( 1, JJ ), 1 )
               IF( NOUNIT ) THEN
                  B( MX+1, JJ ) = REAL( A( MX+1, JJ ) )
               ELSE
                  B( MX+1, JJ ) = ONE
               END IF
               CALL CCOPY( MEN-MX-1, A( MX+2, JJ ),1, B( MX+2, JJ ), 1 )
  110       CONTINUE
            MN = MN + MINT - NZ
            JP = JP + NINT - NZ
*
            DO 130 I = 2, ICEIL( NEN+NZ, NINT )
               DO 120 J = 1, MIN( N, NEN-JP )
                  JJ = JP + J
                  MX = MN + J
                  CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
     $                            ZERO, B( 1, JJ ), 1 )
                  IF( NOUNIT ) THEN
                     B( MX+1, JJ ) = REAL( A( MX+1, JJ ) )
                  ELSE
                     B( MX+1, JJ ) = ONE
                  END IF
                  CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1, B( MX+2, JJ ),
     $                             1 )
  120          CONTINUE
               MN = MN + MINT
               JP = JP + NINT
  130       CONTINUE
*
         ELSE
*
*           A is a rectangular matrix
*
            KZ = NZ
            DO 140 I = 1, ICEIL( NEN+NZ, NINT )
               MX = MIN( N-KZ, NEN-JP )
               CALL PBCMATADD( ICONTXT, 'G', MN, MX, ZERO, DUMMY, 1,
     $                         ZERO, B( 1, JP+1 ), LDB )
               CALL PBCMATADD( ICONTXT, 'V', MEN-MN, MX, ONE,
     $                         A( MN+1, JP+1 ), LDA, ZERO,
     $                         B( MN+1, JP+1 ), LDB )
               MN = MN + MINT
               JP = JP + NINT - KZ
               KZ = 0
  140       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of PBCLACP1
*
      END