1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
SUBROUTINE PBCLACPZ( ICONTXT, UPLO, FORM, DIAG, M, N, A, LDA, B,
$ LDB, MINT, NINT, MEN, NEN )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER*1 DIAG, FORM, UPLO
INTEGER ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBCLACPZ copies part of a two-dimensional upper (or lower) tri-
* angular Matrix A to another matrix B with forced zeros in the
* other part.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT
INTEGER I, J, JJ, JP, MN, MX
COMPLEX DUMMY
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, PBCMATADD, PBCVECADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
NOUNIT = LSAME( DIAG, 'N' )
JP = 0
MN = M
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is upper triangular
*
DO 20 I = 1, ICEIL( NEN, NINT )
DO 10 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
IF( NOUNIT ) THEN
CALL CCOPY( MX, A( 1, JJ ), 1, B( 1, JJ ), 1 )
ELSE
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
10 CONTINUE
MN = MN + MINT
JP = JP + NINT
20 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is upper triangular Hermitian
*
DO 40 I = 1, ICEIL( NEN, NINT )
DO 30 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL CCOPY( MX-1, A( 1, JJ ), 1, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX, JJ ) = REAL( A( MX, JJ ) )
ELSE
B( MX, JJ ) = ONE
END IF
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ZERO, DUMMY, 1,
$ ZERO, B( MX+1, JJ ), 1 )
30 CONTINUE
MN = MN + MINT
JP = JP + NINT
40 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
DO 50 I = 1, ICEIL( NEN, NINT )
MX = MIN( N, NEN-JP )
CALL PBCMATADD( ICONTXT, 'V', MN, MX, ONE, A( 1, JP+1 ),
$ LDA, ZERO, B( 1, JP+1 ), LDB )
CALL PBCMATADD( ICONTXT, 'G', MEN-MN, MX, ZERO, DUMMY, 1,
$ ZERO, B( MN+1, JP+1 ), LDB )
MN = MN + MINT
JP = JP + NINT
50 CONTINUE
*
END IF
*
ELSE
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is lower triangular
*
MN = M - 1
DO 70 I = 1, ICEIL( NEN, NINT )
DO 60 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
CALL CCOPY( MEN-MX, A( MX+1, JJ ), 1,
$ B( MX+1, JJ ), 1 )
ELSE
B( MX+1, JJ ) = ONE
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1,
$ B( MX+2, JJ ), 1 )
END IF
60 CONTINUE
MN = MN + MINT
JP = JP + NINT
70 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is lower triangular Hermitian
*
MN = M - 1
DO 90 I = 1, ICEIL( NEN, NINT )
DO 80 J = 1, MIN( N, NEN-JP )
JJ = JP + J
MX = MN + J
CALL PBCVECADD( ICONTXT, 'G', MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JJ ), 1 )
IF( NOUNIT ) THEN
B( MX+1, JJ ) = REAL( A( MX+1, JJ ) )
ELSE
B( MX+1, JJ ) = ONE
END IF
CALL CCOPY( MEN-MX-1, A( MX+2, JJ ), 1,
$ B( MX+2, JJ ), 1 )
80 CONTINUE
MN = MN + MINT
JP = JP + NINT
90 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
DO 100 I = 1, ICEIL( NEN, NINT )
MX = MIN( N, NEN-JP )
CALL PBCMATADD( ICONTXT, 'G', MN, MX, ZERO, DUMMY, 1,
$ ZERO, B( 1, JP+1 ), LDB )
CALL PBCMATADD( ICONTXT, 'V', MEN-MN, MX, ONE,
$ A( MN+1, JP+1 ), LDA, ZERO,
$ B( MN+1, JP+1), LDB )
MN = MN + MINT
JP = JP + NINT
100 CONTINUE
*
END IF
*
END IF
*
RETURN
*
* End of PBCLACPZ
*
END
|