1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
SUBROUTINE PBCTRAD1( ICONTXT, UPLO, FORM, M, N, NZ, ALPHA, A, LDA,
$ BETA, B, LDB, MINT, NINT, MEN, NEN )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER FORM, UPLO
INTEGER ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT,
$ NZ
COMPLEX ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBCTRAD1 copies part of an upper (or lower) triangular matrix A
* to another matrix B:
* B <== alpha * A + beta * B
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J, JP, JX, KZ, MM, MX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. External Subroutines ..
EXTERNAL PBCMATADD, PBCVECADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is upper triangular (triangular part is at the bottom)
*
MM = M
JP = 0
DO 10 J = 1, MIN( N-NZ, NEN-JP )
JX = JP + J
CALL PBCVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1, JX ), 1,
$ BETA, B( 1, JX ), 1 )
10 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 30 I = 2, ICEIL( NEN+NZ, NINT )
DO 20 J = 1, MIN( N, NEN-JP )
JX = JP + J
CALL PBCVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1, JX ),
$ 1, BETA, B( 1, JX ), 1 )
20 CONTINUE
MM = MM + MINT
JP = JP + NINT
30 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is upper triangular Hermitian
*
MM = M
JP = 0
DO 40 J = 1, MIN( N-NZ, NEN-JP )
JX = JP + J
B( MM+J, JX ) = REAL( BETA ) * REAL( B( MM+J, JX ) ) +
$ REAL( ALPHA ) * REAL( A( MM+J, JX ) )
CALL PBCVECADD( ICONTXT, 'G', MM+J-1, ALPHA, A( 1, JX ),
$ 1, BETA, B( 1, JX ), 1 )
40 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 60 I = 2, ICEIL( NEN+NZ, NINT )
DO 50 J = 1, MIN( N, NEN-JP )
JX = JP + J
B( MM+J, JX ) = REAL( BETA ) * REAL( B( MM+J, JX ) ) +
$ REAL( ALPHA ) * REAL( A( MM+J, JX ) )
CALL PBCVECADD( ICONTXT, 'G', MM+J-1, ALPHA,
$ A( 1, JX ), 1, BETA, B( 1, JX ), 1 )
50 CONTINUE
MM = MM + MINT
JP = JP + NINT
60 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M
JP = 1
KZ = NZ
DO 70 I = 1, ICEIL( NEN+NZ, NINT )
CALL PBCMATADD( ICONTXT, 'G', MM, MIN( N-KZ, NEN-JP+1 ),
$ ALPHA, A( 1, JP ), LDA, BETA, B( 1,JP ),
$ LDB )
MM = MM + MINT
JP = JP + NINT - KZ
KZ = 0
70 CONTINUE
*
END IF
*
ELSE
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is lower triangular (triangular part is at the top)
*
MM = M
JP = 0
DO 80 J = 1, MIN( N-NZ, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN )
$ CALL PBCVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
$ A( MX, JX ), 1, BETA, B( MX, JX ), 1 )
80 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 100 I = 2, ICEIL( NEN+NZ, NINT )
DO 90 J = 1, MIN( N, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN )
$ CALL PBCVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
$ A( MX, JX ), 1, BETA, B( MX, JX ),
$ 1 )
90 CONTINUE
MM = MM + MINT
JP = JP + NINT
100 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is lower triangular (triangular part is at the top)
*
MM = M
JP = 0
DO 110 J = 1, MIN( N-NZ, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN ) THEN
B( MX, JX ) = REAL( BETA ) * REAL( B( MX, JX ) ) +
$ REAL( ALPHA ) * REAL( A( MX, JX ) )
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ALPHA,
$ A( MX+1, JX ), 1, BETA, B( MX+1, JX ),
$ 1 )
END IF
110 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 130 I = 2, ICEIL( NEN+NZ, NINT )
DO 120 J = 1, MIN( N, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN ) THEN
B( MX, JX ) = REAL( BETA )*REAL( B( MX, JX ) ) +
$ REAL( ALPHA )*REAL( A( MX, JX ) )
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ALPHA,
$ A( MX+1, JX ), 1, BETA,
$ B( MX+1, JX ), 1 )
END IF
120 CONTINUE
MM = MM + MINT
JP = JP + NINT
130 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M + 1
JP = 1
KZ = NZ
DO 140 I = 1, ICEIL( NEN+NZ, NINT )
CALL PBCMATADD( ICONTXT, 'G', MEN-MM+1,
$ MIN(N-KZ, NEN-JP+1), ALPHA, A( MM, JP ),
$ LDA, BETA, B( MM, JP ), LDB )
MM = MM + MINT
JP = JP + NINT - KZ
KZ = 0
140 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBCTRAD1
*
END
|