1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
SUBROUTINE PBCTRADD( ICONTXT, UPLO, FORM, M, N, ALPHA, A, LDA,
$ BETA, B, LDB, MINT, NINT, MEN, NEN )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER FORM, UPLO
INTEGER ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT
COMPLEX ALPHA, BETA
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PCTRADD copies part of an upper (or lower) triangular matrix A
* to another matrix B:
* B <== alpha * A + beta * B
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J, JP, JX, MM, MX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. External Subroutines ..
EXTERNAL PBCMATADD, PBCVECADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is upper triangular (triangular part is at the bottom)
*
MM = M
JP = 0
DO 20 I = 1, ICEIL( NEN, NINT )
DO 10 J = 1, MIN( N, NEN-JP )
JX = JP + J
CALL PBCVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1, JX ),
$ 1, BETA, B( 1, JX ), 1 )
10 CONTINUE
MM = MM + MINT
JP = JP + NINT
20 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is upper triangular Hermitian
*
MM = M
JP = 0
DO 40 I = 1, ICEIL( NEN, NINT )
DO 30 J = 1, MIN( N, NEN-JP )
JX = JP + J
CALL PBCVECADD( ICONTXT, 'G', MM+J-1, ALPHA,
$ A( 1, JX ), 1, BETA, B( 1, JX ), 1 )
B( MM+J, JX ) = REAL( BETA ) * REAL( B( MM+J, JX ) ) +
$ REAL( ALPHA )* REAL( A( MM+J, JX ) )
30 CONTINUE
MM = MM + MINT
JP = JP + NINT
40 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M
JP = 1
DO 50 I = 1, ICEIL( NEN, NINT )
CALL PBCMATADD( ICONTXT, 'G', MM, MIN( N, NEN-JP+1 ),
$ ALPHA, A( 1, JP ), LDA, BETA, B( 1, JP ),
$ LDB )
MM = MM + MINT
JP = JP + NINT
50 CONTINUE
END IF
*
ELSE
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is lower triangular (triangular part is at the top)
*
MM = M
JP = 0
DO 70 I = 1, ICEIL( NEN, NINT )
DO 60 J = 1, MIN( N, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN )
$ CALL PBCVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
$ A( MX, JX ), 1, BETA, B( MX, JX ),
$ 1 )
60 CONTINUE
MM = MM + MINT
JP = JP + NINT
70 CONTINUE
*
ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
* A is lower triangular Hermitian
*
MM = M
JP = 0
DO 90 I = 1, ICEIL( NEN, NINT )
DO 80 J = 1, MIN( N, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN ) THEN
B( MX, JX ) = REAL( BETA ) * REAL( B( MX, JX ) ) +
$ REAL( ALPHA ) * REAL( A( MX, JX ) )
CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ALPHA,
$ A( MX+1, JX ), 1, BETA,
$ B( MX+1, JX ), 1 )
END IF
80 CONTINUE
MM = MM + MINT
JP = JP + NINT
90 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M + 1
JP = 1
DO 100 I = 1, ICEIL( NEN, NINT )
CALL PBCMATADD( ICONTXT, 'G', MEN-MM+1,
$ MIN( N, NEN-JP+1 ), ALPHA, A( MM, JP ),
$ LDA, BETA, B( MM, JP ), LDB )
MM = MM + MINT
JP = JP + NINT
100 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBCTRADD
*
END
|