File: pbctradd.f

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (156 lines) | stat: -rw-r--r-- 4,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      SUBROUTINE PBCTRADD( ICONTXT, UPLO, FORM, M, N, ALPHA, A, LDA,
     $                     BETA, B, LDB, MINT, NINT, MEN, NEN )
*
*  -- PB-BLAS routine (version 2.1) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory.
*     April 28, 1996
*
*     .. Scalar Arguments ..
      CHARACTER          FORM, UPLO
      INTEGER            ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT
      COMPLEX            ALPHA, BETA
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * )
*     ..
*
*  Purpose
*  =======
*
*  PCTRADD copies part of an upper (or lower) triangular matrix A
*  to another matrix B:
*                       B <== alpha * A + beta * B
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, J, JP, JX, MM, MX
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICEIL
      EXTERNAL           ICEIL, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           PBCMATADD, PBCVECADD
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, REAL
*     ..
*     .. Executable Statements ..
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
         IF( LSAME( FORM, 'T' ) ) THEN
*
*           A is upper triangular (triangular part is at the bottom)
*
            MM = M
            JP = 0
            DO 20 I = 1, ICEIL( NEN, NINT )
               DO 10 J = 1, MIN( N, NEN-JP )
                  JX = JP + J
                  CALL PBCVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1, JX ),
     $                            1, BETA, B( 1, JX ), 1 )
   10          CONTINUE
               MM = MM + MINT
               JP = JP + NINT
   20       CONTINUE
*
         ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
*           A is upper triangular Hermitian
*
            MM = M
            JP = 0
            DO 40 I = 1, ICEIL( NEN, NINT )
               DO 30 J = 1, MIN( N, NEN-JP )
                  JX = JP + J
                  CALL PBCVECADD( ICONTXT, 'G', MM+J-1, ALPHA,
     $                            A( 1, JX ), 1, BETA, B( 1, JX ), 1 )
                  B( MM+J, JX ) = REAL( BETA ) * REAL( B( MM+J, JX ) ) +
     $                            REAL( ALPHA )* REAL( A( MM+J, JX ) )
   30          CONTINUE
               MM = MM + MINT
               JP = JP + NINT
   40       CONTINUE
*
         ELSE
*
*           A is a rectangular matrix
*
            MM = M
            JP = 1
            DO 50 I = 1, ICEIL( NEN, NINT )
               CALL PBCMATADD( ICONTXT, 'G', MM, MIN( N, NEN-JP+1 ),
     $                         ALPHA, A( 1, JP ), LDA, BETA, B( 1, JP ),
     $                         LDB )
               MM = MM + MINT
               JP = JP + NINT
   50       CONTINUE
         END IF
*
      ELSE
*
         IF( LSAME( FORM, 'T' ) ) THEN
*
*           A is lower triangular (triangular part is at the top)
*
            MM = M
            JP = 0
            DO 70 I = 1, ICEIL( NEN, NINT )
               DO 60 J = 1, MIN( N, NEN-JP )
                  MX = MM + J
                  JX = JP + J
                  IF( MX.LE.MEN )
     $               CALL PBCVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
     $                               A( MX, JX ), 1, BETA, B( MX, JX ),
     $                               1 )
   60          CONTINUE
               MM = MM + MINT
               JP = JP + NINT
   70       CONTINUE
*
         ELSE IF( LSAME( FORM, 'H' ) ) THEN
*
*           A is lower triangular Hermitian
*
            MM = M
            JP = 0
            DO 90 I = 1, ICEIL( NEN, NINT )
               DO 80 J = 1, MIN( N, NEN-JP )
                  MX = MM + J
                  JX = JP + J
                  IF( MX.LE.MEN ) THEN
                     B( MX, JX ) = REAL( BETA ) * REAL( B( MX, JX ) ) +
     $                             REAL( ALPHA ) * REAL( A( MX, JX ) )
                     CALL PBCVECADD( ICONTXT, 'G', MEN-MX, ALPHA,
     $                               A( MX+1, JX ), 1, BETA,
     $                               B( MX+1, JX ), 1 )
                  END IF
   80          CONTINUE
               MM = MM + MINT
               JP = JP + NINT
   90       CONTINUE
*
         ELSE
*
*           A is a rectangular matrix
*
            MM = M + 1
            JP = 1
            DO 100 I = 1, ICEIL( NEN, NINT )
               CALL PBCMATADD( ICONTXT, 'G', MEN-MM+1,
     $                         MIN( N, NEN-JP+1 ), ALPHA, A( MM, JP ),
     $                         LDA, BETA, B( MM, JP ), LDB )
               MM = MM + MINT
               JP = JP + NINT
  100       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of PBCTRADD
*
      END