1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
SUBROUTINE PBDTRAD1( ICONTXT, UPLO, FORM, M, N, NZ, ALPHA, A, LDA,
$ BETA, B, LDB, MINT, NINT, MEN, NEN )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* .. Scalar Arguments ..
CHARACTER FORM, UPLO
INTEGER ICONTXT, LDA, LDB, M, MEN, MINT, N, NEN, NINT,
$ NZ
DOUBLE PRECISION ALPHA, BETA
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* PBDTRAD1 copies part of an upper (or lower) triangular matrix A
* to another matrix B:
* B <== alpha * A + beta * B
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I, J, JP, JX, KZ, MM, MX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. External Subroutines ..
EXTERNAL PBDMATADD, PBDVECADD
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is upper triangular (triangular part is at the bottom)
*
MM = M
JP = 0
DO 10 J = 1, MIN( N-NZ, NEN-JP )
JX = JP + J
CALL PBDVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1, JX ), 1,
$ BETA, B( 1, JX ), 1 )
10 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 30 I = 2, ICEIL( NEN+NZ, NINT )
DO 20 J = 1, MIN( N, NEN-JP )
JX = JP + J
CALL PBDVECADD( ICONTXT, 'G', MM+J, ALPHA, A( 1,JX ),
$ 1, BETA, B( 1, JX ), 1 )
20 CONTINUE
MM = MM + MINT
JP = JP + NINT
30 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M
JP = 1
KZ = NZ
DO 40 I = 1, ICEIL( NEN+NZ, NINT )
CALL PBDMATADD( ICONTXT, 'G', MM, MIN( N-KZ, NEN-JP+1 ),
$ ALPHA, A( 1, JP ), LDA, BETA, B( 1,JP ),
$ LDB )
MM = MM + MINT
JP = JP + NINT - KZ
KZ = 0
40 CONTINUE
*
END IF
*
ELSE
*
IF( LSAME( FORM, 'T' ) ) THEN
*
* A is lower triangular (triangular part is at the top)
*
MM = M
JP = 0
DO 50 J = 1, MIN( N-NZ, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN )
$ CALL PBDVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
$ A( MX, JX ), 1, BETA, B( MX, JX ), 1 )
50 CONTINUE
MM = MM + MINT - NZ
JP = JP + NINT - NZ
*
DO 70 I = 2, ICEIL( NEN+NZ, NINT )
DO 60 J = 1, MIN( N, NEN-JP )
MX = MM + J
JX = JP + J
IF( MX.LE.MEN )
$ CALL PBDVECADD( ICONTXT, 'G', MEN-MX+1, ALPHA,
$ A( MX, JX ), 1, BETA, B( MX, JX ),
$ 1 )
60 CONTINUE
MM = MM + MINT
JP = JP + NINT
70 CONTINUE
*
ELSE
*
* A is a rectangular matrix
*
MM = M + 1
JP = 1
KZ = NZ
DO 80 I = 1, ICEIL( NEN+NZ, NINT )
CALL PBDMATADD( ICONTXT, 'G', MEN-MM+1,
$ MIN(N-KZ, NEN-JP+1), ALPHA, A( MM, JP ),
$ LDA, BETA, B( MM, JP ), LDB )
MM = MM + MINT
JP = JP + NINT - KZ
KZ = 0
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of PBDTRAD1
*
END
|