1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
SUBROUTINE PBSSYMV( ICONTXT, UPLO, XYDIST, N, NB, NZ, ALPHA, A,
$ LDA, X, INCX, BETA, Y, INCY, IAROW, IACOL,
$ IXPOS, IYPOS, XWORK, YWORK, MULLEN, WORK )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* Jaeyoung Choi, Oak Ridge National Laboratory
* Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
* David Walker, Oak Ridge National Laboratory
*
* .. Scalar Arguments ..
CHARACTER*1 UPLO, XWORK, XYDIST, YWORK
INTEGER IACOL, IAROW, ICONTXT, INCX, INCY, IXPOS,
$ IYPOS, LDA, MULLEN, N, NB, NZ
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL A( LDA, * ), X( * ), Y( * ), WORK( * )
*
* Purpose
* =======
*
* PBSSYMV is a parallel blocked version of SSYMV.
* PBSSYMV performs the matrix-vector operations
*
* Y := alpha*A*X + beta*Y,
*
* where A = A**T, alpha and beta are scalars, X and Y are N vectors and
* A is an N-by-N symmetric matrix.
*
* The first elements of the matrices A is located in the middle of the
* first block ((NZ+1,NZ+1) position) and elements of X and Y start from
* the (NZ+1)-th positions.
* X is broadcast if necessary, and Y is collected.
*
* Parameters
* ==========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* UPLO (input) CHARACTER*1
* UPLO specifies whether the upper or lower triangular part of
* the symmetric matrix A is to be referenced as follows:
* referenced as follows:
*
* UPLO = 'U', Only the upper triangular part of the
* symmetric matrix is to be referenced.
* UPLO = 'L', Only the lower triangular part of the
* symmetric matrix is to be referenced.
*
* XYDIST (input) CHARACTER*1
* XYDIST specifies the distribution of vectors x and y
* as follows:
*
* XYDIST = 'C', x and y are distributed columnwise
* or on a column of processes
* XYDIST = 'R', x and y are distributed rowwise
* or on a row of processes
*
* N (input) INTEGER
* N specifies the (global) number of row and columns
* of the matrix A. N >= 0.
*
* NB (input) INTEGER
* NB specifies the block size of matrix A. It also specifies
* the block size of the vectors X and Y. NB >= 1.
*
* NZ (input) INTEGER
* NZ is the row and column offset number to specify the row
* and column distance from the beginning of the block to the
* first element of A. 0 <= NZ < NB.
*
* ALPHA (input) REAL
* ALPHA specifies the scalar alpha.
*
* A (input) REAL array of DIMENSION ( LDA, Nq ),
* Before entry, the N-by-N part of the (global) array A must
* contain the symmetric matrix, such that when UPLO = 'U',
* the leading N-by-N upper triangular part of the array A
* must contain the upper triangular part of the symmetric
* matrix and the strictly lower triangular part of A is not
* referenced, and when UPLO = 'L', the leading N-by-N
* lower triangular part of the array A must contain the lower
* triangular part of the symmetric matrix and the strictly
* upper triangular part of A is not referenced.
*
* LDA (input) INTEGER
* LDA specifies the leading dimension of (local) A as declared
* the calling (sub) program. LDA >= MAX(1,Np).
*
* X (input) REAL array of DIMENSION at least
* ( 1 + ( Np - 1 ) * abs( INCX ) ) if XYDIST = 'C', or
* ( 1 + ( Nq - 1 ) * abs( INCX ) ) if XYDIST = 'R'.
* The incremented array X must contain the vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* BETA (input) REAL
* BETA specifies the scalar beta. When BETA is supplied as
* zero then C need not be set on input.
*
* Y (input/output) REAL array of DIMENSION at least
* ( 1 + ( Np - 1 ) * abs( INCY ) ) if XYDIST = 'C', or
* ( 1 + ( Nq - 1 ) * abs( INCY ) ) if XYDIST = 'R',
* On entry with BETA non-zero, the incremented array Y must
* contain the vector Y.
* On exit, Y is overwritten by the updated vector Y.
*
* INCY (input) INTEGER
* INCY specifies the increment for the elements of Y.
* INCY <> 0.
*
* IAROW (input) INTEGER
* IAROW specifies a row of the process template, which holds
* the first block of the matrix A. 0 <= IAROW < NPROW.
*
* IACOL (input) INTEGER
* IACOL specifies a column of the process template, which
* holds the first block of the matrix A. 0 <= IACOL < NPCOL.
*
* IXPOS (input) INTEGER
* If XYDIST = 'C', IXPOS specifies a column of the process
* template which holds the vector X. If XYDIST = 'R', IXPOS
* specifies a row of the procesors template which holds the
* vector X. If all columns or rows of the template have their
* own copies of X, set IXPOS = -1.
* -1 <= IXPOS < NPCOL if XYDIST = 'C', and -1 <= IXPOS < NPROW
* if XYDIST = 'R'.
*
* IYPOS (input) INTEGER
* If XYDIST = 'C', IYPOS specifies a column of the process
* template which holds the vector Y. If XYDIST = 'R', IYPOS
* specifies a row of the process template which holds the
* vector Y.
* -1 <= IYPOS < NPCOL if XYDIST = 'C', and -1 <= IYPOS < NPROW
* if XYDIST = 'R'.
*
* XWORK (input) CHARACTER*1
* XWORK determines whether X is a workspace or not.
*
* XWORK = 'Y': X is workspace in other processes.
* X is sent to X position in other processes.
* It is assumed that processes have
* sufficient space to store (local) X.
* XWORK = 'N': Data of X in other processes will be
* untouched (unchanged).
*
* YWORK (input) CHARACTER*1
* YWORK determines whether Y is a workspace or not.
*
* YWORK = 'Y': Y is workspace in other processes.
* It is assumed that processes have
* sufficient space to store temporary
* (local) Y.
* YWORK = 'N': Data of X in other processes will be
* untouched (unchanged).
*
* MULLEN (input) INTEGER
* It specifies multiplication length of the optimum column
* number of A for multiplying A with x. The value depends on
* machine characteristics.
*
* WORK (workspace) REAL array of dimension Size(WORK).
* It will store copy of x, y and/or partial A.
*
* Parameters Details
* ==================
*
* Nx It is a local portion of N owned by a process, where x is
* replaced by either p (=NPROW) or q (=NPCOL)). The value is
* determined by N, NB, NZ, x, and MI, where NB is a block size.
* NZ is a offset from the beginning of the block, and MI is a
* row or column position in a process template. Nx is equal
* to or less than Nx0 = CEIL( N+NZ, NB*x ) * NB.
*
* Communication Scheme
* ====================
*
* The communication schemes of the routine are fixed as fan-out and
* fan-in schemes (COMM = '1-tree', for details, see BLACS user's guide)
*
* Memory Requirement of WORK
* ==========================
*
* NN = N + NZ
* Npb = CEIL( NN, NB*NPROW )
* Nqb = CEIL( NN, NB*NPCOL )
* Np0 = NUMROC( NN, NB, 0, 0, NPROW ) ~= Npb * NB
* Nq0 = NUMROC( NN, NB, 0, 0, NPCOL ) ~= Nqb * NB
* LCMP = LCM / NPROW
* LCMQ = LCM / NPCOL
* ISZCMP = CEIL(MULLEN, LCMQ*NB)
* SZCMP = ISZCMP * ISZCMP * LCMQ*NB * LCMP*NB
*
* (1) XYDIST = 'C'
* Size(WORK) = 2 * Nq0
* + Np0 ( if YWORK <> 'Y' )
* + Np0 ( if IXPOS <> -1 and XWORK <> 'Y' )
* + MAX[ SZCMP,
* CEIL(Nqb,LCMQ)*NB*MIN(LCMQ,CEIL(NN,NB)) ]
*
* (2) XYDIST = 'R'
* Size(WORK) = 2 * Np0
* + Nq0 ( if YWORK <> 'Y' )
* + Nq0 ( if IXPOS <> -1 and XWORK <> 'Y' )
* + MAX[ SZCMP,
* CEIL(Npb,LCMP)*NB*MIN(LCMP,CEIL(NN,NB)) ]
*
* Notes
* -----
* More precise space can be computed as
*
* CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(NN,NB,0,0,NPROW), NB, 0, 0, LCMP)
* = NUMROC( Np0, NB, 0, 0, LCMP )
* CEIL(Nqb,LCMQ)*NB => NUMROC( NUMROC(NN,NB,0,0,NPCOL), NB, 0, 0, LCMQ)
* = NUMROC( Nq0, NB, 0, 0, LCMQ )
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER*1 FORM
LOGICAL COLUMN, UPPER, XDATA, YDATA
INTEGER INFO, IPBZ, IPT, IPW, IPX, IPY, IPZ, IQBZ,
$ ISZCMP, IZ, JJ, JNPBZ, JNQBZ, JPBZ, JQBZ, JZ,
$ KI, KIZ, KJ, KJZ, KZ, LCM, LCMP, LCMQ, LDW,
$ LMW, LNW, LPBZ, LQBZ, MRCOL, MRROW, MYCOL,
$ MYROW, MZCOL, MZROW, NN, NP, NPCOL, NPROW, NQ
REAL DUMMY
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, ILCM, NUMROC
EXTERNAL ICEIL, ILCM, LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, PBSDZRO1, PBSLACP1, PBSTRNV,
$ PBSVECADD, PXERBLA, SGEBR2D, SGEBS2D, SGEMV,
$ SGSUM2D
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( N.EQ.0 .OR. ( ALPHA.EQ.ZERO .AND. BETA.EQ.ONE ) )
$ RETURN
*
CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
UPPER = LSAME( UPLO, 'U' )
COLUMN = LSAME( XYDIST, 'C' )
*
* Test the input parameters.
*
INFO = 0
IF( ( .NOT.UPPER ) .AND.
$ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
INFO = 2
ELSE IF( ( .NOT.COLUMN ).AND.
$ ( .NOT.LSAME( XYDIST, 'R') ) ) THEN
INFO = 3
ELSE IF( N .LT.0 ) THEN
INFO = 4
ELSE IF( NB .LT.0 ) THEN
INFO = 5
ELSE IF( NZ .LT.0 .OR. NZ.GE.NB ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 11
ELSE IF( INCY.EQ.0 ) THEN
INFO = 14
ELSE IF( IAROW.LT.0 .OR. IAROW.GE.NPROW ) THEN
INFO = 15
ELSE IF( IACOL.LT.0 .OR. IACOL.GE.NPCOL ) THEN
INFO = 16
END IF
*
10 CONTINUE
IF( INFO .NE. 0 ) THEN
CALL PXERBLA( ICONTXT, 'PBSSYMV ', INFO )
RETURN
END IF
*
* Start the operations.
*
NN = N + NZ
NP = NUMROC( NN, NB, MYROW, IAROW, NPROW )
IF( MYROW .EQ. IAROW ) NP = NP - NZ
NQ = NUMROC( NN, NB, MYCOL, IACOL, NPCOL )
IF( MYCOL .EQ. IACOL ) NQ = NQ - NZ
*
* Quick return if alpha = zero
*
IF( ALPHA .EQ. ZERO ) THEN
IF( COLUMN .AND. MYCOL.EQ.IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'V', NP, ZERO, DUMMY, 1, BETA,
$ Y, INCY )
ELSE IF( LSAME( XYDIST, 'R' ) .AND. MYROW.EQ.IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'G', NQ, ZERO, DUMMY, 1, BETA,
$ Y, INCY )
END IF
RETURN
END IF
*
IZ = 0
IF( MYROW .EQ. IAROW ) IZ = NZ
JZ = 0
IF( MYCOL .EQ. IACOL ) JZ = NZ
KZ = 0
*
* LCM : the least common multiple of NPROW and NPCOL
*
LCM = ILCM( NPROW, NPCOL )
LCMP = LCM / NPROW
LCMQ = LCM / NPCOL
LPBZ = LCMP * NB
LQBZ = LCMQ * NB
*
MRROW = MOD( NPROW+MYROW-IAROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-IACOL, NPCOL )
XDATA = .FALSE.
IF( IXPOS .EQ. -1 ) XDATA = .TRUE.
YDATA = .FALSE.
IF( LDA .LT. MAX(1,NP) ) INFO = 9
*
* PART 1: Distribute a vector X and its transpose X'
* ==================================================
*
* If X and Y are distributed columnwise (in a column of processes)
*
IF( COLUMN ) THEN
* Form y := alpha*A*x + beta*y
* _____________
* || |\_ | || ||
* || | \_ | || ||
* || | \_ | || ||
* (x) = alpha * | A_ | * (x) + beta * (y)
* || | \_ | || ||
* || | \_ | || ||
* || |____________\| || ||
*
IF( IXPOS.LT.-1 .OR. IXPOS.GE.NPCOL ) THEN
INFO = 17
ELSE IF( IYPOS.LT.0 .OR. IYPOS.GE.NPCOL ) THEN
INFO = 18
END IF
IF( INFO .NE. 0 ) GO TO 10
*
* Initialize parameters
*
IF( LSAME( YWORK, 'Y' ) ) THEN
IPZ = 1
YDATA = .TRUE.
IF( MYCOL .EQ. IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'G', NP, ZERO, DUMMY, 1, BETA,
$ Y, INCY )
ELSE
CALL PBSVECADD( ICONTXT, 'G', NP, ZERO, DUMMY, 1, ZERO,
$ Y, INCY )
END IF
ELSE
IPY = 1
IPZ = NP + IPY
CALL PBSVECADD( ICONTXT, 'G', NP, ZERO, DUMMY, 1, ZERO,
$ WORK(IPY), 1 )
END IF
*
CALL PBSVECADD( ICONTXT, 'G', NQ, ZERO, DUMMY, 1, ZERO,
$ WORK(IPZ), 1 )
*
IPT = NQ + IPZ
IPX = NQ + IPT
IPW = NP + IPX
*
* Broadcast X if necessary
*
IF( .NOT. XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYCOL .EQ. IXPOS ) THEN
CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP, X, INCX )
ELSE
CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP, X, INCX,
$ MYROW, IXPOS )
END IF
XDATA = .TRUE.
IPW = IPX
ELSE
IF( MYCOL .EQ. IXPOS ) THEN
CALL PBSVECADD( ICONTXT, 'V', NP, ONE, X,INCX, ZERO,
$ WORK(IPX), 1 )
CALL SGEBS2D( ICONTXT, 'Row', '1-tree', 1, NP,
$ WORK(IPX), 1 )
ELSE
CALL SGEBR2D( ICONTXT, 'Row', '1-tree', 1, NP,
$ WORK(IPX), 1, MYROW, IXPOS )
END IF
END IF
END IF
*
* Transpose a column vector X to WORK(IPT)
*
IF( XDATA ) THEN
CALL PBSTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, X, INCX, ZERO,
$ WORK(IPT), 1, IAROW, -1, -1, IACOL, WORK(IPW) )
ELSE
CALL PBSTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, WORK(IPX), 1,
$ ZERO, WORK(IPT), 1, IAROW, -1, -1, IACOL,
$ WORK(IPW) )
END IF
*
* If x and y are distributed rowwise (in a row of processes)
*
ELSE
*
* Form y := alpha*A*x + beta*y
* _____________
* |\_ |
* | \_ |
* | \_ |
* ====(x)==== = a * | A_ | * ====(x)==== + b * ====(y)====
* | \_ |
* | \_ |
* |____________\|
*
IF( IXPOS.LT.-1 .OR. IXPOS.GE.NPROW ) THEN
INFO = 17
ELSE IF( IYPOS.LT.0 .OR. IYPOS.GE.NPROW ) THEN
INFO = 18
END IF
IF( INFO .NE. 0 ) GO TO 10
*
* Initialize parameters
*
IF( LSAME( YWORK, 'Y' ) ) THEN
IPZ = 1
YDATA = .TRUE.
IF( MYROW .EQ. IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'G', NQ, ZERO, DUMMY, 1, BETA,
$ Y, INCY )
ELSE
CALL PBSVECADD( ICONTXT, 'G', NQ, ZERO, DUMMY, 1, ZERO,
$ Y, INCY )
END IF
ELSE
IPY = 1
IPZ = NQ + IPY
CALL PBSVECADD( ICONTXT, 'G', NQ, ZERO, DUMMY, 1, ZERO,
$ WORK(IPY), 1 )
END IF
*
CALL PBSVECADD( ICONTXT, 'G', NP, ZERO, DUMMY, 1, ZERO,
$ WORK(IPZ), 1 )
*
IPT = NP + IPZ
IPX = NP + IPT
IPW = NQ + IPX
*
* Broadcast X if necessary
*
IF( .NOT. XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYROW .EQ. IXPOS ) THEN
CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ, X, INCX )
ELSE
CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ, X, INCX,
$ IXPOS, MYCOL )
END IF
XDATA = .TRUE.
IPW = IPX
ELSE
IF( MYROW .EQ. IXPOS ) THEN
CALL PBSVECADD( ICONTXT, 'V', NQ, ONE, X,INCX, ZERO,
$ WORK(IPX), 1 )
CALL SGEBS2D( ICONTXT, 'Col', '1-tree', 1, NQ,
$ WORK(IPX), 1 )
ELSE
CALL SGEBR2D( ICONTXT, 'Col', '1-tree', 1, NQ,
$ WORK(IPX), 1, IXPOS, MYCOL )
END IF
END IF
END IF
*
* Transpose a row vector X (= WORK(IPX)) to WORK(IPT)
*
IF( XDATA ) THEN
CALL PBSTRNV( ICONTXT, 'Row', 'T', N, NB, NZ, X, INCX, ZERO,
$ WORK(IPT), 1, -1, IACOL, IAROW, -1, WORK(IPW) )
ELSE
CALL PBSTRNV( ICONTXT, 'Row', 'T', N, NB, NZ, WORK(IPX), 1,
$ ZERO, WORK(IPT), 1, -1, IACOL, IAROW, -1,
$ WORK(IPW) )
END IF
END IF
*
* PART 2: Compute Y
* =================
*
IF( NP.EQ.0 .OR. NQ.EQ.0 ) GO TO 120
*
* If A is a symmetric upper triangular matrix,
*
IF( UPPER ) THEN
ISZCMP = ICEIL( MULLEN, LQBZ )
IF( ISZCMP .LE. 0 ) ISZCMP = 1
IPBZ = ISZCMP * LPBZ
IQBZ = ISZCMP * LQBZ
JPBZ = 0
JQBZ = 0
*
DO 60 JJ = 1, ICEIL(NQ+JZ, IQBZ)
LMW = MIN( IPBZ-IZ, NP-JPBZ )
LNW = MIN( IQBZ-JZ, NQ-JQBZ )
LDW = MAX( 1, LMW )
JNPBZ = JPBZ + LMW
JNQBZ = JQBZ + LNW
*
* Copy the upper triangular matrix A to WORK(IPW)
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYCOL .EQ. IACOL ) KZ = JZ
*
DO 30 KJ = 0, LCMQ-1
20 CONTINUE
IF( MZROW .LT. MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 20
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
FORM = 'G'
IF( MZROW .EQ. MZCOL )
$ FORM = 'T'
MZCOL = MZCOL + NPCOL
*
CALL PBSLACP1( ICONTXT, 'Upper', FORM, 'No', KIZ, NB, KZ,
$ A( JPBZ+1, JQBZ+KJZ+1 ), LDA,
$ WORK( KJZ*LMW+IPW ), LMW, LPBZ, LQBZ, LMW,
$ LNW-KJZ )
KZ = 0
30 CONTINUE
*
* Compute Y
*
IF( COLUMN ) THEN
IF( YDATA ) THEN
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPT), 1, ONE, Y(JPBZ*INCY+1), INCY )
CALL SGEMV( 'No', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(JQBZ+IPT), 1, ONE, Y, INCY )
ELSE
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPT), 1, ZERO, WORK(JPBZ+IPY), 1 )
CALL SGEMV( 'No', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(JQBZ+IPT), 1, ONE, WORK(IPY), 1 )
END IF
ELSE
IF( XDATA ) THEN
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ X(JQBZ*INCX+1),INCX, ZERO, WORK(JPBZ+IPZ),1 )
CALL SGEMV( 'No', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ X(JQBZ*INCX+1), INCX, ONE, WORK(IPZ), 1 )
ELSE
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPX), 1, ZERO, WORK(JPBZ+IPZ), 1 )
CALL SGEMV( 'No', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(JQBZ+IPX), 1, ONE, WORK(IPZ), 1 )
END IF
END IF
*
* Delete the diagonal elements of upper tri. matrix WORK(IPW)
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL ) KZ = IZ
*
DO 50 KJ = 0, LCMQ-1
40 CONTINUE
IF( MZROW .LT. MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 40
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
IF( MZROW .EQ. MZCOL )
$ CALL PBSDZRO1( KIZ, NB, KZ, WORK(KJZ*LMW+IPW), LMW,
$ LPBZ, LQBZ, LNW-KJZ )
KZ = 0
MZCOL = MZCOL + NPCOL
50 CONTINUE
*
* Compute Y
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ X(JPBZ*INCX+1),INCX, ZERO, WORK(JQBZ+IPZ),1 )
CALL SGEMV( 'Trans', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ X, INCX, ONE, WORK(JQBZ+IPZ), 1 )
ELSE
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPX), 1, ZERO, WORK(JQBZ+IPZ), 1 )
CALL SGEMV( 'Trans', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(IPX), 1, ONE, WORK(JQBZ+IPZ), 1 )
END IF
ELSE
IF( YDATA ) THEN
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPT), 1, ONE, Y(JQBZ*INCY+1), INCY )
CALL SGEMV( 'Trans', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(IPT), 1, ONE, Y(JQBZ*INCY+1), INCY )
ELSE
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPT), 1, ZERO, WORK(JQBZ+IPY), 1 )
CALL SGEMV( 'Trans', JPBZ, LNW, ALPHA, A(1,JQBZ+1), LDA,
$ WORK(IPT), 1, ONE, WORK(JQBZ+IPY), 1 )
END IF
END IF
*
JPBZ = JNPBZ
JQBZ = JNQBZ
IZ = 0
JZ = 0
*
60 CONTINUE
*
* If A is a symmetric lower triangular matrix,
*
ELSE
*
ISZCMP = ICEIL( MULLEN, LQBZ )
IF( ISZCMP .LE. 0 ) ISZCMP = 1
IPBZ = ISZCMP * LPBZ
IQBZ = ISZCMP * LQBZ
JPBZ = 0
JQBZ = 0
*
DO 110 JJ = 1, ICEIL(NQ+JZ, IQBZ)
LMW = MIN( IPBZ-IZ, NP-JPBZ )
LNW = MIN( IQBZ-JZ, NQ-JQBZ )
LDW = MAX( 1, LMW )
JNPBZ = JPBZ + LMW
JNQBZ = JQBZ + LNW
*
* Copy the lower triangular matrix A to WORK(IPW)
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYCOL .EQ. IACOL ) KZ = JZ
*
DO 80 KJ = 0, LCMQ-1
70 CONTINUE
IF( MZROW .LT. MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 70
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
FORM = 'G'
IF( MZROW .EQ. MZCOL )
$ FORM = 'T'
MZCOL = MZCOL + NPCOL
*
CALL PBSLACP1( ICONTXT, 'Lower', FORM, 'No', KIZ, NB, KZ,
$ A( JPBZ+1, JQBZ+KJZ+1 ), LDA,
$ WORK( KJZ*LMW+IPW ), LMW, LPBZ, LQBZ, LMW,
$ LNW-KJZ )
KZ = 0
80 CONTINUE
*
* Compute Y
*
IF( COLUMN ) THEN
IF( YDATA ) THEN
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPT), 1, ONE, Y(JPBZ*INCY+1), INCY )
CALL SGEMV( 'No', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JQBZ+IPT), 1,
$ ONE, Y(JNPBZ*INCY+1), INCY )
ELSE
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPT), 1, ONE, WORK(JPBZ+IPY), 1 )
CALL SGEMV( 'No', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JQBZ+IPT), 1,
$ ONE, WORK(JNPBZ+IPY), 1 )
END IF
ELSE
IF( XDATA ) THEN
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ X(JQBZ*INCX+1), INCX, ONE, WORK(JPBZ+IPZ), 1 )
CALL SGEMV( 'No', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, X(JQBZ*INCX+1), INCX,
$ ONE, WORK(JNPBZ+IPZ), 1 )
ELSE
CALL SGEMV( 'No', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JQBZ+IPX), 1, ONE, WORK(JPBZ+IPZ), 1 )
CALL SGEMV( 'No', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JQBZ+IPX), 1,
$ ONE, WORK(JNPBZ+IPZ), 1 )
END IF
END IF
*
* Delete the diagonal elements of lower tri. matrix WORK(IPW)
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL ) KZ = JZ
*
DO 100 KJ = 0, LCMQ-1
90 CONTINUE
IF( MZROW .LT. MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 90
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
IF( MZROW .EQ. MZCOL )
$ CALL PBSDZRO1( KIZ, NB, KZ, WORK(KJZ*LMW+IPW), LMW,
$ LPBZ, LQBZ, LNW-KJZ )
KZ = 0
MZCOL = MZCOL + NPCOL
100 CONTINUE
*
* Compute Y
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ X(JPBZ*INCX+1),INCX, ZERO, WORK(JQBZ+IPZ), 1 )
CALL SGEMV( 'Trans', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, X(JNPBZ*INCX+1), INCX,
$ ONE, WORK(JQBZ+IPZ), 1 )
ELSE
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPX), 1, ZERO, WORK(JQBZ+IPZ), 1 )
CALL SGEMV( 'Trans', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JNPBZ+IPX), 1,
$ ONE, WORK(JQBZ+IPZ), 1 )
END IF
ELSE
IF( YDATA ) THEN
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPT), 1, ONE, Y(JQBZ*INCY+1), INCY )
CALL SGEMV( 'Trans', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JNPBZ+IPT), 1,
$ ONE, Y(JQBZ*INCY+1), INCY )
ELSE
CALL SGEMV( 'Trans', LMW, LNW, ALPHA, WORK(IPW), LDW,
$ WORK(JPBZ+IPT), 1, ZERO, WORK(JQBZ+IPY), 1 )
CALL SGEMV( 'Trans', NP-JNPBZ, LNW, ALPHA,
$ A(JNPBZ+1,JQBZ+1), LDA, WORK(JNPBZ+IPT), 1,
$ ONE, WORK(JQBZ+IPY), 1 )
END IF
END IF
*
JPBZ = JNPBZ
JQBZ = JNQBZ
IZ = 0
JZ = 0
110 CONTINUE
END IF
*
120 CONTINUE
*
* PART 3: Collect and add Y, Y := Y ( = WORK(IPY) ) + WORK(IPZ)'
* ==============================================================
*
* If X and Y are distributed columnwise ( XYDIST = 'C' )
*
IF( COLUMN ) THEN
IF( YDATA ) THEN
CALL SGSUM2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
$ MYROW, IYPOS )
ELSE
IF( MYCOL .EQ. IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'V', NP, ONE, WORK(IPY), 1, BETA,
$ Y, INCY )
CALL SGSUM2D( ICONTXT, 'Row', '1-tree', 1, NP, Y, INCY,
$ MYROW, IYPOS )
ELSE
CALL SGSUM2D( ICONTXT, 'Row', '1-tree', 1, NP, WORK(IPY), 1,
$ MYROW, IYPOS )
END IF
END IF
*
CALL SGSUM2D( ICONTXT, 'Col', '1-tree', 1, NQ, WORK(IPZ), 1,
$ IAROW, MYCOL )
CALL PBSTRNV( ICONTXT, 'Row', 'T', N, NB, NZ, WORK(IPZ), 1, ONE,
$ Y, INCY, IAROW, IACOL, IAROW, IYPOS, WORK(IPT) )
*
* If X and Y are distributed rowwise ( XYDIST = 'R' )
*
ELSE
IF( YDATA ) THEN
CALL SGSUM2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
$ IYPOS, MYCOL )
ELSE
IF( MYROW .EQ. IYPOS ) THEN
CALL PBSVECADD( ICONTXT, 'V', NQ, ONE, WORK(IPY), 1, BETA,
$ Y, INCY )
CALL SGSUM2D( ICONTXT, 'Col', '1-tree', 1, NQ, Y, INCY,
$ IYPOS, MYCOL )
ELSE
CALL SGSUM2D( ICONTXT, 'Col', '1-tree', 1, NQ, WORK(IPY), 1,
$ IYPOS, MYCOL )
END IF
END IF
*
CALL SGSUM2D( ICONTXT, 'Row', '1-tree', 1, NP, WORK(IPZ), 1,
$ MYROW, IACOL )
CALL PBSTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, WORK(IPZ), 1, ONE,
$ Y, INCY, IAROW, IACOL, IYPOS, IACOL, WORK(IPT) )
END IF
*
RETURN
*
* End of PBSSYMV
*
END
|