1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
SUBROUTINE PBZHER( ICONTXT, UPLO, XDIST, N, NB, NZ, ALPHA, X,
$ INCX, A, LDA, IXPOS, IAROW, IACOL, XCOMM,
$ XWORK, AWORK, MULLEN, WORK )
*
* -- PB-BLAS routine (version 2.1) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory.
* April 28, 1996
*
* Jaeyoung Choi, Oak Ridge National Laboratory
* Jack Dongarra, University of Tennessee and Oak Ridge National Lab.
* David Walker, Oak Ridge National Laboratory
*
* .. Scalar Arguments ..
CHARACTER*1 AWORK, UPLO, XCOMM, XDIST, XWORK
INTEGER IACOL, IAROW, ICONTXT, INCX, IXPOS, LDA,
$ MULLEN, N, NB, NZ
DOUBLE PRECISION ALPHA
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), X( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PBZHER is a parallel blocked version of ZHER.
* PBZHER performs the Hermitian rank 1 operation
*
* A := alpha*x*x' + A,
*
* where alpha is a scalar, x is an N-element vector distributed on a
* column or a row of the process template, and A is an N-by-N
* Hermitian matrix.
*
* The first elements of the vector X and the matrix A can be located in
* the middle of the first blocks.
* X can be broadcast if necessary and then transposed. The communica-
* tion scheme can be selected.
*
* Parameters
* ==========
*
* ICONTXT (input) INTEGER
* ICONTXT is the BLACS mechanism for partitioning communication
* space. A defining property of a context is that a message in
* a context cannot be sent or received in another context. The
* BLACS context includes the definition of a grid, and each
* process' coordinates in it.
*
* UPLO (input) CHARACTER*1
* UPLO specifies whether the upper or lower triangular part of
* the array A is to be referenced as follows:
*
* UPLO = 'U', Only the upper triangular part of A
* is to be referenced.
* UPLO = 'L', Only the lower triangular part of A
* is to be referenced.
*
* XDIST (input) CHARACTER*1
* XDIST specifies the distribution of the vector x as follows:
*
* XDIST = 'C', x is distributed columnwise
* or in a column of processes
* XDIST = 'R', x is distributed rowwise
* or in a row of processes
*
* N (input) INTEGER
* N specifies the (global) size of the matrix A. N >= 0.
*
* NB (input) INTEGER
* NB specifies the row and column block size of the matrix A
* It also specifies block size of the vector X. NB >= 1.
*
* NZ (input) INTEGER
* NZ is the row and column offset to specify the row and column
* distance from the beginning of the block to the first element
* of A. And it also specifies the offset to the first element
* of the vector X. 0 <= NZ < NB.
*
* ALPHA (input) DOUBLE PRECISION
* ALPHA specifies the scalar alpha.
*
* X (input) COMPLEX*16 array of DIMENSION at least
* ( 1 + ( Np - 1 ) * abs( INCX ) ) if XDIST = 'C', or
* ( 1 + ( Nq - 1 ) * abs( INCX ) ) if XDIST = 'R'.
* The incremented array X must contain the vector X.
*
* INCX (input) INTEGER
* INCX specifies the increment for the elements of X.
* INCX <> 0.
*
* A (input/output) COMPLEX*16 array of local DIMENSION (LDA,Nq).
* On entry with UPLO = 'U', the leading N-by-N upper triangular
* part of the (global) array A must contain the upper triangu-
* lar part of the Hermitian matrix and the strictly lower
* triangular part of A is not referenced. On exit, the upper
* triangular part of the array A is overwritten by the upper
* triangular part of the updated matrix.
* On entry with UPLO= 'L', the leading N-by-N lower triangular
* part of the (global) array A must contain the lower
* triangular part of the Hermitian matrix and the strictly
* upper triangular part of A is not referenced. On exit,
* the lower triangular part of the array A is overwritten by
* the lower triangular part of the updated matrix.
*
* LDA (input) INTEGER
* LDA specifies the leading dimension of the (local) array A.
* LDA >= MAX(1,Np).
*
* IXPOS (input) INTEGER
* If XDIST = 'C', IXPOS specifies a column of process template,
* which holds the vector X. And if XDIST = 'R', IXPOS speci-
* fies a row of the template, which holds the vector X.
* If all columns or rows of processes have their own copies of
* X, then set IXPOS = -1.
*
* IAROW (input) INTEGER
* It specifies a row of process template which has the
* first block of A. It also represents a row of the template
* which holds the first blcok of the vector X if XDIST = 'C'.
*
* IACOL (input) INTEGER
* It specifies a column of process template which has the
* first block of A. It also represents the column of the
* template which holds the first blcok of the vector X if
* XDIST = 'R'.
*
* XCOMM (input) CHARACTER*1
* XCOMM specifies the communication scheme of the vector X if
* communication is necessary. It follows topology definition
* of BLACS.
*
* XWORK (input) CHARACTER*1
* XWORK determines whether X is a workspace or not.
*
* XWORK = 'Y': X is workspace in other processes.
* X is sent to X position in other processes.
* It is assumed that processes have
* sufficient space to store (local) X.
* XWORK = 'N': Data in X will be untouched (unchanged).
*
* AWORK (input) CHARACTER*1
* AWORK determines whether the other triangular part of A is
* accessed and modified or not.
*
* AWORK = 'N': if UPLO = 'U', only upper triangular portion
* portion of the matrix A is accessed and the
* lower triangular portion is untouched.
* Likewise if UPLO = 'L', only lower triangular
* portion of the matrix A is accessed and the
* upper triangular portion is untouched.
* AWORK = 'Y': if UPLO = 'U', only lower triangular portion
* of the matrix A may be accessed and modified
* for fast computation. And if UPLO = 'L', the
* upper triangular portion of the matrix A may
* be accessed and modified for fast computation.
*
* MULLEN (input) INTEGER
* MULLEN specifies multiplication length of the optimum column
* number of the matrix A for multiplying X with X'. The value
* depends on machine characteristics.
*
* WORK (workspace) COMPLEX*16 array of DIMENSION SIZE(WORK).
* It will store copy of X and/or X'.
*
* Parameters Details
* ==================
*
* Lx It is a local portion of L owned by a process, (L is
* replaced by M, or N, and x is replaced by either p
* (=NPROW) or q (=NPCOL)). The value is determined by L, LB,
* x, and MI, where LB is a block size and MI is a row or
* column position in a process template. Lx is equal to or
* less than Lx0 = CEIL( L, LB*x ) * LB.
*
* Memory Requirement of WORK
* ==========================
*
* NN = N + NZ
* Npb = CEIL( NN, NB*NPROW )
* Nqb = CEIL( NN, NB*NPCOL )
* Np0 = NUMROC( NN, NB, 0, 0, NPROW ) ~= Npb * NB
* Nq0 = NUMROC( NN, NB, 0, 0, NPCOL ) ~= Nqb * NB
* LCMQ = LCM / NPCOL
* LCMP = LCM / NPROW
* ISZCMP = CEIL(MULLEN, LCMQ*NB)
* SZCMP = ISZCMP * ISZCMP * LCMQ*NB * LCMP*NB
*
* (1) XDIST = 'Col'
* Size(WORK) = Nq0
* + Np0 ( if IXPOS <> -1 and XWORK <> 'Y' )
* + MAX[ SZCMP ( if AWORK <> 'Y' ),
* CEIL(Nqb,LCMQ)*NB*MIN(LCMQ,CEIL(NN,NB) ]
* (b) XDIST = 'Row'
* Size(WORK) = Np0
* + Nq0 ( if IXPOS <> -1 and XWORK <> 'Y' )
* + MAX[ SZCMP ( if AWORK <> 'Y' ),
* CEIL(Npb,LCMP)*NB*MIN(LCMP,CEIL(NN,NB) ]
*
* Notes
* -----
* More precise space can be computed as
*
* CEIL(Nqb,LCMQ)*NB => NUMROC( NUMROC(NN,NB,0,0,NPCOL), NB, 0, 0, LCMQ)
* = NUMROC( Nq0, NB, 0, 0, LCMQ )
* CEIL(Npb,LCMP)*NB => NUMROC( NUMROC(NN,NB,0,0,NPROW), NB, 0, 0, LCMP)
* = NUMROC( Np0, NB, 0, 0, LCMP )
*
* =====================================================================
*
* ..
* .. Parameters ..
DOUBLE PRECISION RZERO
PARAMETER ( RZERO = 0.0D+0 )
COMPLEX*16 ONE, ZERO
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
$ ZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER*1 COMMX, FORM
LOGICAL ASPACE, COLUMN, UPPER, XDATA
INTEGER INFO, IPBZ, IPT, IPW, IQBZ, ISZCMP, IZ, JJ,
$ JNPBZ, JPBZ, JQBZ, JZ, KI, KIZ, KJ, KJZ, KZ,
$ LCM, LCMP, LCMQ, LMW, LNW, LPBZ, LQBZ, MRCOL,
$ MRROW, MYCOL, MYROW, MZCOL, MZROW, NN, NP,
$ NPCOL, NPROW, NQ
COMPLEX*16 DUMMY, TALPHA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL, ILCM, NUMROC
EXTERNAL ICEIL, ILCM, LSAME, NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, PBZTRAD1, PBZTRNV, PBZVECADD,
$ PXERBLA, ZGEBR2D, ZGEBS2D, ZGERC
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( N.EQ.0 .OR. ALPHA.EQ.RZERO ) RETURN
*
CALL BLACS_GRIDINFO( ICONTXT, NPROW, NPCOL, MYROW, MYCOL )
*
UPPER = LSAME( UPLO, 'U' )
COLUMN = LSAME( XDIST, 'C' )
*
* Test the input parameters.
*
INFO = 0
IF( ( .NOT.UPPER ).AND.
$ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
INFO = 2
ELSE IF( ( .NOT.COLUMN ).AND.
$ ( .NOT.LSAME( XDIST, 'R' ) ) ) THEN
INFO = 3
ELSE IF( N .LT.0 ) THEN
INFO = 4
ELSE IF( NB .LT.1 ) THEN
INFO = 5
ELSE IF( NZ .LT.0 .OR. NZ.GE.NB ) THEN
INFO = 6
ELSE IF( INCX.EQ.0 ) THEN
INFO = 9
ELSE IF( IAROW.LT.0 .OR. IAROW.GE.NPROW ) THEN
INFO = 13
ELSE IF( IACOL.LT.0 .OR. IACOL.GE.NPCOL ) THEN
INFO = 14
END IF
*
10 CONTINUE
IF( INFO.NE.0 ) THEN
CALL PXERBLA( ICONTXT, 'PBZHER ', INFO )
RETURN
END IF
*
* Start the operations.
*
IZ = 0
JZ = 0
NN = N + NZ
NP = NUMROC( NN, NB, MYROW, IAROW, NPROW )
IF( MYROW.EQ.IAROW ) THEN
NP = NP - NZ
IZ = NZ
END IF
*
NQ = NUMROC( NN, NB, MYCOL, IACOL, NPCOL )
IF( MYCOL.EQ.IACOL ) THEN
NQ = NQ - NZ
JZ = NZ
END IF
KZ = 0
*
ASPACE = LSAME( AWORK, 'Y' )
XDATA = .FALSE.
IF( IXPOS.EQ.-1 ) XDATA = .TRUE.
COMMX = XCOMM
IF( LSAME( COMMX, ' ' ) ) COMMX = '1'
*
* LCM : the least common multiple of NPROW and NPCOL
*
LCM = ILCM( NPROW, NPCOL )
LCMP = LCM / NPROW
LCMQ = LCM / NPCOL
LPBZ = LCMP * NB
LQBZ = LCMQ * NB
*
MRROW = MOD( NPROW+MYROW-IAROW, NPROW )
MRCOL = MOD( NPCOL+MYCOL-IACOL, NPCOL )
TALPHA = DCMPLX( ALPHA )
*
IF( LDA .LT. MAX(1,NP) ) INFO = 11
*
* PART 1: Distribute a column (or row) vector X and its transpose
* ===============================================================
*
IF( COLUMN ) THEN
*
* Form A := alpha*X*X' + A.
* _____________ _____________
* |\_ | || |\_ |
* | \_ | || | \_ |
* | \_ | || _____________ | \_ |
* | A_ | = a * |X * ------X'----- + | A_ |
* | \_ | || | \_ |
* | \_ | || | \_ |
* |____________\| || |____________\|
*
IF( IXPOS.LT.-1 .OR. IXPOS.GE.NPCOL ) INFO = 12
IF( INFO.NE.0 ) GO TO 10
*
* Broadcast X if necessary
*
IPT = 1
IF( .NOT. XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYCOL.EQ.IXPOS ) THEN
CALL ZGEBS2D( ICONTXT, 'Row', COMMX, 1, NP, X, INCX )
ELSE
CALL ZGEBR2D( ICONTXT, 'Row', COMMX, 1, NP, X, INCX,
$ MYROW, IXPOS )
END IF
XDATA = .TRUE.
ELSE
IF( MYCOL.EQ.IXPOS ) THEN
CALL PBZVECADD( ICONTXT, 'V', NP, ONE, X, INCX, ZERO,
$ WORK, 1 )
CALL ZGEBS2D( ICONTXT, 'Row', COMMX, 1, NP, WORK, 1 )
ELSE
CALL ZGEBR2D( ICONTXT, 'Row', COMMX, 1, NP, WORK, 1,
$ MYROW, IXPOS )
END IF
IPT = NP + 1
END IF
END IF
*
* Transpose the vector X to WORK(IPT), where X is distributed
*
IPW = NQ + IPT
IF( XDATA ) THEN
CALL PBZTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, X, INCX, ZERO,
$ WORK(IPT), 1, IAROW, -1, -1, IACOL, WORK(IPW) )
ELSE
CALL PBZTRNV( ICONTXT, 'Col', 'T', N, NB, NZ, WORK, 1, ZERO,
$ WORK(IPT), 1, IAROW, -1, -1, IACOL, WORK(IPW) )
END IF
*
ELSE
*
* Form A := alpha*x'*x + A.
* _____________ _____________
* |\_ | || |\_ |
* | \_ | || | \_ |
* | \_ | || _____________ | \_ |
* | A_ | = a * X' * ------X------ + | A_ |
* | \_ | || | \_ |
* | \_ | || | \_ |
* |____________\| || |____________\|
*
IF( IXPOS.LT.-1 .OR. IXPOS.GE.NPROW ) INFO = 12
IF( INFO.NE.0 ) GO TO 10
*
* Broadcast X if necessary
*
IPT= 1
IF( .NOT. XDATA ) THEN
IF( LSAME( XWORK, 'Y' ) ) THEN
IF( MYROW.EQ.IXPOS ) THEN
CALL ZGEBS2D( ICONTXT, 'Col', COMMX, 1, NQ, X, INCX )
ELSE
CALL ZGEBR2D( ICONTXT, 'Col', COMMX, 1, NQ, X, INCX,
$ IXPOS, MYCOL )
END IF
XDATA = .TRUE.
ELSE
IF( MYROW.EQ.IXPOS ) THEN
CALL PBZVECADD( ICONTXT, 'G', NQ, ONE, X, INCX, ZERO,
$ WORK, 1 )
CALL ZGEBS2D( ICONTXT, 'Col', COMMX, 1, NQ, WORK, 1 )
ELSE
CALL ZGEBR2D( ICONTXT, 'Col', COMMX, 1, NQ, WORK, 1,
$ IXPOS, MYCOL )
END IF
IPT = NQ + 1
END IF
END IF
*
* Transpose the vector X to WORK(IPT), where X is distributed
*
IPW = NP + IPT
IF( XDATA ) THEN
CALL PBZTRNV( ICONTXT, 'Row', 'T', N, NB, NZ, X, INCX, ZERO,
$ WORK(IPT), 1, -1, IACOL, IAROW, -1, WORK(IPW) )
ELSE
CALL PBZTRNV( ICONTXT, 'Row', 'T', N, NB, NZ, WORK, 1, ZERO,
$ WORK(IPT), 1, -1, IACOL, IAROW, -1, WORK(IPW) )
END IF
END IF
*
* PART 2: Update A with X and X'
* ==============================
*
IF( NP.EQ.0 .OR. NQ.EQ.0 ) RETURN
*
* If A is a Hermitian upper triangular matrix,
*
IF( UPPER ) THEN
ISZCMP = ICEIL( MULLEN, LQBZ )
IF( ISZCMP.LE.0 ) ISZCMP = 1
IPBZ = ISZCMP * LPBZ
IQBZ = ISZCMP * LQBZ
JPBZ = 0
JQBZ = 0
*
DO 40 JJ = 1, ICEIL(NQ+JZ, IQBZ)
LMW = MIN( IPBZ-IZ, NP-JPBZ )
LNW = MIN( IQBZ-JZ, NQ-JQBZ )
JNPBZ = JPBZ + LMW
*
* Modify (change) data in the lower triangular part
*
IF( ASPACE ) THEN
*
* if XDIST = 'Column'
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL ZGERC( JNPBZ, LNW, TALPHA, X, INCX, WORK(JQBZ+IPT),
$ 1, A(1,JQBZ+1), LDA )
ELSE
CALL ZGERC( JNPBZ, LNW, TALPHA, WORK, 1, WORK(JQBZ+IPT),
$ 1, A(1,JQBZ+1), LDA )
END IF
*
* if XDIST = 'Row'
*
ELSE
IF( XDATA ) THEN
CALL ZGERC( JNPBZ, LNW, TALPHA, WORK(IPT), 1,
$ X(JQBZ*INCX+1), INCX, A(1,JQBZ+1), LDA )
ELSE
CALL ZGERC( JNPBZ, LNW, TALPHA, WORK(IPT), 1,
$ WORK(JQBZ+1), 1, A(1,JQBZ+1), LDA )
END IF
END IF
*
* Update data in the upper triangular matrix
* and save data in the lower triangular matrix
*
ELSE
*
* if XDIST = 'Column'
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL ZGERC( JPBZ, LNW, TALPHA, X, INCX,
$ WORK(JQBZ+IPT), 1, A(1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, X(JPBZ*INCX+1), INCX,
$ WORK(JQBZ+IPT), 1, WORK(IPW), MAX(1,LMW) )
ELSE
CALL ZGERC( JPBZ, LNW, TALPHA, WORK, 1, WORK(JQBZ+IPT),
$ 1, A(1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+1), 1,
$ WORK(JQBZ+IPT), 1, WORK(IPW), MAX(1,LMW) )
END IF
*
* if XDIST = 'Row'
*
ELSE
IF( XDATA ) THEN
CALL ZGERC( JPBZ, LNW, TALPHA, WORK(IPT), 1,
$ X(JQBZ*INCX+1), INCX, A(1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ X(JQBZ*INCX+1), INCX, WORK(IPW), MAX(1,LMW))
ELSE
CALL ZGERC( JPBZ, LNW, TALPHA, WORK(IPT), 1,
$ WORK(JQBZ+1), 1, A(1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ WORK(JQBZ+1), 1, WORK(IPW), MAX(1,LMW) )
END IF
END IF
*
* Compute diagonal blocks.
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYCOL.EQ.IACOL ) KZ = JZ
*
DO 30 KJ = 0, LCMQ-1
20 CONTINUE
IF( MZROW.LT.MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 20
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
IF( KJZ.GE.LNW )
$ GO TO 40
FORM = 'G'
IF( MZROW.EQ.MZCOL )
$ FORM = 'H'
MZCOL = MZCOL + NPCOL
CALL PBZTRAD1( ICONTXT, 'Upper', FORM, KIZ, NB, KZ, ONE,
$ WORK( KJZ*LMW+IPW ), LMW, ONE,
$ A( JPBZ+1, JQBZ+KJZ+1 ), LDA,
$ LPBZ, LQBZ, LMW, LNW-KJZ )
KZ = 0
30 CONTINUE
END IF
*
JPBZ = JNPBZ
JQBZ = JQBZ + LNW
IZ = 0
JZ = 0
40 CONTINUE
*
* If A is a Hermitian lower triangular matrix,
*
ELSE
*
ISZCMP = ICEIL( MULLEN, LQBZ )
IF( ISZCMP.LE.0 ) ISZCMP = 1
IPBZ = ISZCMP * LPBZ
IQBZ = ISZCMP * LQBZ
JPBZ = 0
JQBZ = 0
*
DO 70 JJ = 1, ICEIL(NQ+JZ, IQBZ)
LMW = MIN( IPBZ-IZ, NP-JPBZ )
LNW = MIN( IQBZ-JZ, NQ-JQBZ )
JNPBZ = JPBZ + LMW
*
* Modify (change) data in the upper triangular part
*
IF( ASPACE ) THEN
*
* if XDIST = 'Column'
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL ZGERC( NP-JPBZ, LNW, TALPHA, X(JPBZ*INCX+1), INCX,
$ WORK(JQBZ+IPT), 1, A(JPBZ+1,JQBZ+1), LDA )
ELSE
CALL ZGERC( NP-JPBZ, LNW, TALPHA, WORK(JPBZ+1), 1,
$ WORK(JQBZ+IPT), 1, A(JPBZ+1,JQBZ+1), LDA )
END IF
*
* if XDIST = 'Row'
*
ELSE
IF( XDATA ) THEN
CALL ZGERC( NP-JPBZ, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ X(JQBZ*INCX+1), INCX, A(JPBZ+1,JQBZ+1), LDA)
ELSE
CALL ZGERC( NP-JPBZ, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ WORK(JQBZ+1), 1, A(JPBZ+1,JQBZ+1), LDA )
END IF
END IF
*
* Update data in the lower triangular matrix
* and save data in the upper triangular matrix
*
ELSE
*
* if XDIST = 'Column'
*
IF( COLUMN ) THEN
IF( XDATA ) THEN
CALL ZGERC( NP-JNPBZ, LNW, TALPHA, X(JNPBZ*INCX+1),
$ INCX, WORK(JQBZ+IPT), 1, A(JNPBZ+1,JQBZ+1),
$ LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, X(JPBZ*INCX+1), INCX,
$ WORK(JQBZ+IPT), 1, WORK(IPW), MAX(1,LMW) )
ELSE
CALL ZGERC( NP-JNPBZ, LNW, TALPHA, WORK(JNPBZ+1), 1,
$ WORK(JQBZ+IPT), 1, A(JNPBZ+1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+1), 1,
$ WORK(JQBZ+IPT), 1, WORK(IPW), MAX(1,LMW) )
END IF
*
* if XDIST = 'Row'
*
ELSE
IF( XDATA ) THEN
CALL ZGERC( NP-JNPBZ, LNW, TALPHA, WORK(JNPBZ+IPT), 1,
$ X(JQBZ*INCX+1), INCX, A(JNPBZ+1,JQBZ+1),LDA)
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ X(JQBZ*INCX+1), INCX, WORK(IPW), MAX(1,LMW))
ELSE
CALL ZGERC( NP-JNPBZ, LNW, TALPHA, WORK(JNPBZ+IPT), 1,
$ WORK(JQBZ+1), 1, A(JNPBZ+1,JQBZ+1), LDA )
CALL PBZVECADD( ICONTXT, 'G', LMW*LNW, ZERO, DUMMY, 1,
$ ZERO, WORK(IPW), 1 )
CALL ZGERC( LMW, LNW, TALPHA, WORK(JPBZ+IPT), 1,
$ WORK(JQBZ+1), 1, WORK(IPW), MAX(1,LMW) )
END IF
END IF
*
* Compute diagonal blocks.
*
MZROW = MRROW
MZCOL = MRCOL
KI = 0
IF( MYCOL.EQ.IACOL ) KZ = JZ
*
DO 60 KJ = 0, LCMQ-1
50 CONTINUE
IF( MZROW.LT.MZCOL ) THEN
MZROW = MZROW + NPROW
KI = KI + 1
GO TO 50
END IF
KIZ = MAX( 0, KI*NB-IZ )
KJZ = MAX( 0, KJ*NB-JZ )
IF( KJZ.GE.LNW )
$ GO TO 70
FORM = 'G'
IF( MZROW.EQ.MZCOL )
$ FORM = 'H'
MZCOL = MZCOL + NPCOL
*
CALL PBZTRAD1( ICONTXT, 'Lower', FORM, KIZ, NB, KZ, ONE,
$ WORK( KJZ*LMW+IPW ), LMW, ONE,
$ A( JPBZ+1, JQBZ+KJZ+1 ), LDA,
$ LPBZ, LQBZ, LMW, LNW-KJZ )
KZ = 0
60 CONTINUE
END IF
*
JPBZ = JNPBZ
JQBZ = JQBZ + LNW
IZ = 0
JZ = 0
70 CONTINUE
END IF
*
RETURN
*
* End of PBZHER
*
END
|