1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
/* ---------------------------------------------------------------------
*
* -- ScaLAPACK routine (version 1.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 17, 1996
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "pblas.h"
void pdamax_( n, amax, indx, X, ix, jx, desc_X, incx )
/*
* .. Scalar Arguments ..
*/
int * incx, * indx, * ix, * jx, * n;
double * amax;
/* ..
* .. Array Arguments ..
*/
int desc_X[];
double X[];
{
/*
* Purpose
* =======
*
* PDAMAX computes the global index of the maximum element in absolute
* value of a distributed vector sub( X ). The global index is returned
* in INDX and the value is returned in AMAX,
*
* where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector descA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DT_A (global) descA[ DT_ ] The descriptor type. In this case,
* DT_A = 1.
* CTXT_A (global) descA[ CTXT_ ] The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) descA[ M_ ] The number of rows in the global
* array A.
* N_A (global) descA[ N_ ] The number of columns in the global
* array A.
* MB_A (global) descA[ MB_ ] The blocking factor used to distribu-
* te the rows of the array.
* NB_A (global) descA[ NB_ ] The blocking factor used to distribu-
* te the columns of the array.
* RSRC_A (global) descA[ RSRC_ ] The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) descA[ CSRC_ ] The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) descA[ LLD_ ] The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be seen as particular matrices, a distributed
* vector is considered to be a distributed matrix.
*
*
* Arguments
* =========
*
* N (global input) pointer to INTEGER
* The number of components of the distributed vector sub( X ).
* N >= 0.
*
* AMAX (global output) pointer to DOUBLE PRECISION
* The absolute value of the largest entry of the distributed
* vector sub( X ) only in the scope of sub( X ).
*
* INDX (global output) pointer to INTEGER
* The global index of the maximum element in absolute value of
* the distributed vector sub( X ) only in its scope.
*
* X (local input) DOUBLE PRECISION array containing the local
* pieces of a distributed matrix of dimension of at least
* ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
* This array contains the entries of the distributed vector
* sub( X ).
*
* IX (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix X to operate on.
*
* JX (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix X to operate on.
*
* DESCX (global and local input) INTEGER array of dimension 8.
* The array descriptor of the distributed matrix X.
*
* INCX (global input) pointer to INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
*
* =====================================================================
*
* .. Local Scalars ..
*/
char * rbtop, * rctop, * cbtop, * cctop;
int ictxt, iix, info, ixcol, ixrow, jjx, locindex, maxpos,
mone=-1, mycol, myrow, nn, np, nprow, npcol, nq, nz,
one=1, two=2;
double work[2];
/* ..
* .. External Functions ..
*/
void blacs_gridinfo_();
void igebr2d_();
void igebs2d_();
void dgamx2d_();
void pbchkvect();
void pberror_();
char * ptop();
F_VOID_FCT pdtreecomb_();
F_VOID_FCT dcombamax_();
F_INTG_FCT numroc_();
F_INTG_FCT idamax_();
/* ..
* .. Executable Statements ..
*
* Get grid parameters
*/
ictxt = desc_X[CTXT_];
blacs_gridinfo_( &ictxt, &nprow, &npcol, &myrow, &mycol );
/*
* Test the input parameters
*/
info = 0;
if( nprow == -1 )
info = -(700+CTXT_+1);
else
pbchkvect( *n, 1, *ix, *jx, desc_X, *incx, 7, &iix, &jjx, &ixrow,
&ixcol, nprow, npcol, myrow, mycol, &info );
if( info )
{
pberror_( &ictxt, "PDAMAX", &info );
return;
}
/*
* Quick return if possible.
*/
*indx = 0;
*amax = ZERO;
if( *n == 0 ) return;
/*
* Find the maximum value and its index
*/
if( ( *incx == 1 ) && ( desc_X[M_] == 1 ) && ( *n == 1 ) )
{
if( ( myrow == ixrow ) && ( mycol == ixcol ) )
{
*indx = *jx;
*amax = X[iix-1+(jjx-1)*desc_X[LLD_]];
}
return;
}
if( *incx == desc_X[M_] )
{
if( myrow == ixrow )
{
nz = (*jx-1) % desc_X[NB_];
nn = *n + nz;
nq = numroc_( &nn, &desc_X[NB_], &mycol, &ixcol, &npcol );
if( mycol == ixcol )
nq -= nz;
rbtop = ptop( BROADCAST, ROW, TOPGET );
if( *rbtop == CTOPDEF )
{
if( nq > 0 )
{
locindex = jjx-1 + idamax_( &nq,
&X[iix-1+(jjx-1)*desc_X[LLD_]],
&desc_X[LLD_] );
work[0] = X[iix-1 + (locindex-1)*desc_X[LLD_]];
work[1] = (double) INDXL2G( locindex, desc_X[NB_],
mycol, desc_X[CSRC_],
npcol );
}
else
{
work[0] = ZERO;
}
pdtreecomb_( &ictxt, C2F_CHAR( ROW ), &two, work, &mone,
&mycol, dcombamax_ );
*amax = work[0];
*indx = ( *amax == ZERO ) ? ( *jx ) : ( (int) work[1] );
}
else
{
rctop = ptop( COMBINE, ROW, TOPGET );
if( nq > 0 )
{
locindex = jjx-1 + idamax_( &nq,
&X[iix-1+(jjx-1)*desc_X[LLD_]],
&desc_X[LLD_] );
*amax = X[iix-1 + (locindex-1)*desc_X[LLD_]];
}
else
{
*amax = ZERO;
}
dgamx2d_( &ictxt, C2F_CHAR( ROW ), C2F_CHAR( rctop ), &one,
&one, amax, &one, &np, &maxpos, &one, &mone, &myrow );
if( *amax != ZERO )
{
if( mycol == maxpos )
{
*indx = INDXL2G( locindex, desc_X[NB_], mycol,
desc_X[CSRC_], npcol );
igebs2d_( &ictxt, C2F_CHAR( ROW ), C2F_CHAR( rbtop ), &one,
&one, indx, &one );
}
else
{
igebr2d_( &ictxt, C2F_CHAR( ROW ), C2F_CHAR( rbtop ), &one,
&one, indx, &one, &myrow, &maxpos );
}
}
else
{
*indx = *jx;
}
}
}
}
else
{
if( mycol == ixcol )
{
nz = (*ix-1) % desc_X[MB_];
nn = *n + nz;
np = numroc_( &nn, &desc_X[MB_], &myrow, &ixrow, &nprow );
if( myrow == ixrow )
np -= nz;
cbtop = ptop( BROADCAST, COLUMN, TOPGET );
if( *cbtop == CTOPDEF )
{
if( np > 0 )
{
locindex = iix-1 + idamax_( &np,
&X[iix-1+(jjx-1)*desc_X[LLD_]],
&one );
work[0] = X[locindex-1 + (jjx-1)*desc_X[LLD_]];
work[1] = (double) INDXL2G( locindex, desc_X[MB_],
myrow, desc_X[RSRC_], nprow );
}
else
{
work[0] = ZERO;
}
pdtreecomb_( &ictxt, C2F_CHAR( COLUMN ), &two, work, &mone,
&mycol, dcombamax_ );
*amax = work[0];
*indx = ( *amax == ZERO ) ? ( *ix ) : ( (int) work[1] );
}
else
{
cctop = ptop( COMBINE, COLUMN, TOPGET );
if( np > 0 )
{
locindex = iix-1 + idamax_( &np,
&X[iix-1+(jjx-1)*desc_X[LLD_]],
&one );
*amax = X[locindex-1 + (jjx-1)*desc_X[LLD_]];
}
else
{
*amax = ZERO;
}
dgamx2d_( &ictxt, C2F_CHAR( COLUMN ), C2F_CHAR( cctop ), &one,
&one, amax, &one, &maxpos, &nq, &one, &mone, &mycol );
if( *amax != ZERO )
{
if( myrow == maxpos )
{
*indx = INDXL2G( locindex, desc_X[MB_], myrow,
desc_X[RSRC_], nprow );
igebs2d_( &ictxt, C2F_CHAR( COLUMN ), C2F_CHAR( cbtop ), &one,
&one, indx, &one );
}
else
{
igebr2d_( &ictxt, C2F_CHAR( COLUMN ), C2F_CHAR( cbtop ), &one,
&one, indx, &one, &maxpos, &mycol );
}
}
else
{
*indx = *ix;
}
}
}
}
}
|