File: psgemv_.c

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (575 lines) | stat: -rw-r--r-- 21,278 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/* ---------------------------------------------------------------------
*
*  -- ScaLAPACK routine (version 1.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 17, 1996
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"

void psgemv_( trans, m, n, alpha, A, ia, ja, desc_A, X, ix, jx, desc_X,
              incx, beta, Y, iy, jy, desc_Y, incy )
/*
*  .. Scalar Arguments ..
*/
   F_CHAR      trans;
   int         * ia, * incx, * incy, * ix, * iy, * ja, * jx, * jy, * m,
               * n;
   float       * alpha, * beta;
/* ..
*  .. Array Arguments ..
*/
   int        desc_A[], desc_X[], desc_Y[];
   float       A[], X[], Y[];
{
/*
*  Purpose
*  =======
*
*  PSGEMV performs one of the distributed matrix-vector operations
*
*     sub( Y ) := alpha*sub( A )  * sub( X )  + beta*sub( Y ),  or
*     sub( Y ) := alpha*sub( A )' * sub( X )  + beta*sub( Y ),
*
*  where sub( A ) denotes A(IA:IA+M-1,JA:JA+N-1),
*
*        sub( X ) denotes if TRANS = 'N',
*                       X(IX:IX,JX:JX+N-1), if INCX = M_X,
*                       X(IX:IX+N-1,JX:JX), if INCX = 1 and INCX <> M_X,
*                     else
*                       X(IX:IX,JX:JX+M-1), if INCX = M_X,
*                       X(IX:IX+M-1,JX:JX), if INCX = 1 and INCX <> M_X,
*                     end if
*
*        sub( Y ) denotes if trans = 'N',
*                       Y(IY:IY,JY:JY+M-1), if INCY = M_Y,
*                       Y(IY:IY+M-1,JY:JY), if INCY = 1 and INCY <> M_Y,
*                     else
*                       Y(IY:IY,JY:JY+N-1), if INCY = M_Y,
*                       Y(IY:IY+N-1,JY:JY), if INCY = 1 and INCY <> M_Y,
*                     end if
*
*  alpha and beta are scalars, and sub( X ) and sub( Y ) are distributed
*  vectors and sub( A ) is a M-by-N distributed submatrix.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector descA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DT_A   (global) descA[ DT_ ]   The descriptor type.  In this case,
*                                 DT_A = 1.
*  CTXT_A (global) descA[ CTXT_ ] The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) descA[ M_ ]    The number of rows in the global
*                                 array A.
*  N_A    (global) descA[ N_ ]    The number of columns in the global
*                                 array A.
*  MB_A   (global) descA[ MB_ ]   The blocking factor used to distribu-
*                                 te the rows of the array.
*  NB_A   (global) descA[ NB_ ]   The blocking factor used to distribu-
*                                 te the columns of the array.
*  RSRC_A (global) descA[ RSRC_ ] The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) descA[ CSRC_ ] The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  descA[ LLD_ ]  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be seen as particular matrices, a distributed
*  vector is considered to be a distributed matrix.
*
*  If TRANS = 'N', INCX = M_X and INCY = M_Y, the process column having
*  the first entries of sub( X ) must also contain the first block of
*  sub( A ).  Moreover, the row blocksize of  A  must be equal to the
*  column blocksize of Y, i.e MB_A = NB_Y, and the column blocksize of A
*  must be equal to the column block size of X, i.e NB_A = NB_X.
*  Finally, the column offset of sub( X ) must be equal to the column
*  offset of sub( A ), i.e MOD(JX-1,NB_X) = MOD(JA-1,NB_A), and the row
*  offset of sub( A ) must be equal to the column offset of sub( Y ),
*  i.e MOD(IA-1,MB_A) = MOD(JY-1,NB_Y).
*
*  If TRANS = 'N', INCX = M_X, INCY = 1 and INCY <> M_Y, the process row
*  having the first entries of sub( Y ) must also contain the first
*  block of sub( A ), the process column having the first entries of
*  sub( X ) must also contain the first block of sub( A ). Moreover, the
*  row blocksize of  A  must be equal to the row blocksize of Y, i.e
*  MB_A = MB_Y, and the column blocksize of A must be equal to the
*  column block size of X, i.e NB_A = NB_X. Finally, the column offset
*  of sub( X ) must be equal to the column offset of sub( A ), i.e
*  MOD(JX-1,NB_X) = MOD(JA-1,NB_A), and the row offset of sub( A ) must
*  be equal to the row offset of sub( Y ), i.e
*  MOD(IA-1,MB_A) = MOD(IY-1,MB_Y).
*
*  If TRANS = 'N', INCX = 1, INCX <> M_X and INCY = M_Y, the row
*  blocksize of A must be equal to the column blocksize of Y, i.e
*  MB_A = NB_Y, and the column block size of A must be equal to the row
*  blocksize of X, i.e NB_A = MB_X. Finally, the row offset of sub( X )
*  must be equal to the column offset of sub( A ), i.e
*  MOD(IX-1,MB_X) = MOD(JA-1,NB_A), and the row offset of sub( A ) must
*  be equal to the column offset of sub( Y ), i.e
*  MOD(IA-1,MB_A) = MOD(JY-1,NB_Y).
*
*  If TRANS = 'N', INCX = 1, INCX <> M_X, INCY = 1 and INCY <> M_Y, the
*  process row having the first entries of sub( Y ) must also contain
*  the first block of sub( A ). Moreover, the row blocksize of  A  must
*  be equal to the row blocksize of Y, i.e MB_A = MB_Y, and the column
*  block size of A must be equal to the row block size of X, i.e
*  NB_A = MB_X. Finally, the row offset of sub( X ) must be equal to the
*  column offset of sub( A ), i.e MOD(IX-1,MB_X) = MOD(JA-1,NB_A), and
*  the row offset of sub( A ) must be equal to the row offset of
*  sub( Y ), i.e MOD(IA-1,MB_A) = MOD(IY-1,MB_Y).
*
*  When trans <> 'N', use the previous explanations and replace X by Y,
*  and Y by X everywhere, and sub( A ) by sub( A )'.
*
*  Parameters
*  ==========
*
*  TRANS   (global input) pointer to CHARACTER
*          On entry, TRANS specifies the operation to be performed as
*          follows:
*
*          if TRANS = 'N' or 'n',
*          sub( Y ) := alpha*sub( A )  * sub( X ) + beta*sub( Y ),
*
*          else if TRANS = 'T' or 't',
*          sub( Y ) := alpha*sub( A )' * sub( X ) + beta*sub( Y ),
*
*          else if TRANS = 'C' or 'c',
*          sub( Y ) := alpha*sub( A )' * sub( X ) + beta*sub( Y ).
*
*  M       (global input) pointer to INTEGER
*          The number of rows to be operated on i.e the number of rows
*          of the distributed submatrix sub( A ). M >= 0.
*
*  N       (global input) pointer to INTEGER
*          The number of columns to be operated on i.e the number of
*          columns of the distributed submatrix sub( A ). N >= 0.
*
*  ALPHA   (global input) pointer to REAL
*          On entry, ALPHA specifies the scalar alpha.
*
*  A       (local input) REAL pointer into the local memory
*          to an array of dimension (LLD_A,LOCc(JA+N-1) containing the
*          local pieces of the distributed matrix sub( A ).
*
*  IA      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix A to operate on.
*
*  JA      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix A to operate on.
*
*  DESCA   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix A.
*
*  X       (local input) REAL array containing the local
*          pieces of a distributed matrix of dimension of at least
*          if TRANS = 'N' or TRANS = 'n',
*                  ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
*          else
*                  ( (JX-1)*M_X + IX + ( M - 1 )*abs( INCX ) )
*          This array contains the entries of the distributed vector
*          sub( X ).
*
*  IX      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix X to operate on.
*
*  JX      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix X to operate on.
*
*  DESCX   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix X.
*
*  INCX    (global input) pointer to INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*
*  BETA    (global input) pointer to REAL
*          On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*          supplied as zero then sub( Y ) need not be set on input.
*
*  Y       (local input/local output) REAL array
*          containing the local pieces of a distributed matrix of
*          dimension of at least
*          if TRANS = 'N' or TRANS = 'n',
*                ( (JY-1)*M_Y + IY + ( M - 1 )*abs( INCY ) )
*          else
*                ( (JY-1)*M_Y + IY + ( N - 1 )*abs( INCY ) )
*          This array contains the entries of the distributed vector
*          sub( Y ).  On exit, sub( Y ) is overwritten by the updated
*          distributed vector sub( Y ).
*
*  IY      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix Y to operate on.
*
*  JY      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix Y to operate on.
*
*  DESCY   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix Y.
*
*  INCY    (global input) pointer to INTEGER
*          The global increment for the elements of Y. Only two values
*          of INCY are supported in this version, namely 1 and M_Y.
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   char        * rtop, * ctop, TrA, xdist, ydist;
   int         iacol, iarow, icoffa, ictxt, iia, iix, iiy, info, iroffa,
               ixcol, ixrow, iycol, iyrow, jja, jjx, jjy, lcm, lcmp,
               lcmq, locincx, locincy, mm, mp0, mq0, mycol, myrow, nca,
               nn, nota, np0, nprow, npcol, nra, nq0, tmp1, tmp2, wksz;
/* ..
*  .. PBLAS Buffer ..
*/
   float       * buff;
/* ..
*  .. External Functions ..
*/
   void        blacs_gridinfo_();
   void        pbchkmat();
   void        pbchkvect();
   void        pberror_();
   char        * getpbbuf();
   char        * ptop();
   F_VOID_FCT  pbsgemv_();
   F_INTG_FCT  ilcm_();
/* ..
*  .. Executable Statements ..
*
*  Get grid parameters
*/
   ictxt = desc_A[CTXT_];
   blacs_gridinfo_( &ictxt, &nprow, &npcol, &myrow, &mycol );
/*
*  Test the input parameters
*/
   info = 0;
   if( nprow == -1 )
      info = -(800+CTXT_+1);
   else
   {
      TrA = Mupcase( F2C_CHAR( trans )[0] );
      nota = ( TrA == 'N' );
      iroffa = (*ia-1) % desc_A[MB_];
      icoffa = (*ja-1) % desc_A[NB_];
      pbchkmat( *m, 2, *n, 3, *ia, *ja, desc_A, 8, &iia, &jja,
                &iarow, &iacol, nprow, npcol, myrow, mycol,
                &nra, &nca, &info );
      if( nota )
      {
         pbchkvect( *n, 3, *ix, *jx, desc_X, *incx, 12, &iix, &jjx,
                    &ixrow, &ixcol, nprow, npcol, myrow, mycol,
                    &info );
         pbchkvect( *m, 2, *iy, *jy, desc_Y, *incy, 18, &iiy, &jjy,
                    &iyrow, &iycol, nprow, npcol, myrow, mycol,
                    &info );
      }
      else
      {
         pbchkvect( *m, 2, *ix, *jx, desc_X, *incx, 12, &iix, &jjx,
                    &ixrow, &ixcol, nprow, npcol, myrow, mycol,
                    &info );
         pbchkvect( *n, 3, *iy, *jy, desc_Y, *incy, 18, &iiy, &jjy,
                    &iyrow, &iycol, nprow, npcol, myrow, mycol,
                    &info );
      }
      if( info == 0 )
      {
         if( (TrA != 'N') && (TrA != 'T') && (TrA != 'C') )
            info = -1;
         if( nota )
         {
            if( *incx == desc_X[M_] )
            {
               if( ( ((*jx-1) % desc_A[NB_]) != icoffa ) ||
                   ( ixcol != iacol )  )
                  info = -11;
               else if( desc_A[NB_] != desc_X[NB_] )
                  info = -(1200+NB_+1);
            }
            else if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) )
            {
               if( ((*ix-1) % desc_A[NB_]) != icoffa )
                  info = -10;
               else if( desc_A[NB_] != desc_X[MB_] )
                  info = -(1200+MB_+1);
            }
            else
            {
               info = -13;
            }
            if( *incy == desc_Y[M_] )
            {
               if( ((*jy-1) % desc_A[MB_]) != iroffa )
                  info = -17;
               else if( desc_A[MB_] != desc_Y[NB_])
                  info = -(1800+NB_+1);
            }
            else if( ( *incy == 1 ) && ( *incy != desc_Y[M_] ) )
            {
               if( ( ((*iy-1) % desc_A[MB_]) != iroffa ) ||
                   ( iyrow != iarow ) )
                  info = -16;
               else if( desc_A[MB_] != desc_Y[MB_] )
                  info = -(1800+MB_+1);
            }
            else
            {
               info = -19;
            }
         }
         else
         {
            if( *incx == desc_X[M_] )
            {
               if( ((*jx-1) % desc_A[MB_]) != iroffa )
                  info = -11;
               else if( desc_A[MB_] != desc_X[NB_] )
                  info = -(1200+NB_+1);
            }
            else if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) )
            {
               if( ( ((*ix-1) % desc_A[MB_]) != iroffa ) ||
                   ( ixrow != iarow ) )
                  info = -10;
               else if( desc_A[MB_] != desc_X[MB_] )
                  info = -(1200+MB_+1);
            }
            else
            {
               info = -13;
            }
            if( *incy == desc_Y[M_] )
            {
               if( ( ((*jy-1) % desc_A[NB_]) != icoffa ) ||
                   ( iycol != iacol ) )
                  info = -16;
               else if( desc_A[NB_] != desc_Y[NB_] )
                  info = -(1800+NB_+1);
            }
            else if( ( *incy == 1 ) && ( *incy != desc_Y[M_] ) )
            {
               if( ((*iy-1) % desc_A[NB_]) != icoffa )
                  info = -16;
               else if( desc_A[NB_] != desc_Y[MB_] )
                  info = -(1800+MB_+1);
            }
            else
            {
               info = -19;
            }
         }
         if( ictxt != desc_X[CTXT_] )
            info = -(1200+CTXT_+1);
         if( ictxt != desc_Y[CTXT_] )
            info = -(1800+CTXT_+1);
      }
   }
   if( info )
   {
      pberror_( &ictxt, "PSGEMV", &info );
      return;
   }
/*
*  Quick return if possible.
*/
   if( ( *m == 0 ) || ( *n == 0 ) ||
       ( ( *alpha == ZERO ) && ( *beta == ONE ) ) )
      return;
/*
*  Figure out the arguments to be passed to pbsgemv
*/
   mm = *m + iroffa;
   nn = *n + icoffa;

   lcm = ilcm_( &nprow, &npcol );
   if( nota )
   {
      tmp1 = mm / desc_A[MB_];
      mp0 = MYROC0( tmp1, mm, desc_A[MB_], nprow );
      tmp2 = nn / desc_A[NB_];
      nq0 = MYROC0( tmp2, nn, desc_A[NB_], npcol );
      if( *incx == desc_X[M_] )
      {
         xdist = 'R';
         locincx = desc_X[LLD_];
         if( *incy == desc_Y[M_] )
         {
            lcmq = lcm / npcol;
            ydist = 'R';
            locincy = desc_Y[LLD_];
            tmp1 = mm / desc_A[NB_];
            mq0 = MYROC0( tmp1, mm, desc_A[NB_], npcol );
            tmp1 = mq0 / desc_A[NB_];
            tmp1 = MYROC0( tmp1, mq0, desc_A[NB_], lcmq );
            wksz = mp0 + MAX( nq0, tmp1 );
         }
         else
         {
            ydist = 'C';
            locincy = 1;
            wksz = nq0 + mp0;
         }
      }
      else
      {
         lcmq = lcm / npcol;
         xdist = 'C';
         locincx = 1;
         tmp1 = nq0 / desc_A[NB_];
         tmp1 = MYROC0( tmp1, nq0, desc_A[NB_], lcmq );
         if( *incy == desc_Y[M_] )
         {
            lcmp = lcm / nprow;
            ydist = 'R';
            locincy = desc_Y[LLD_];
            tmp1 += nq0;
            tmp2 = mp0 / desc_A[MB_];
            tmp2 = MYROC0( tmp2, mp0, desc_A[MB_], lcmp );
            wksz = mp0 + MAX( tmp1, tmp2 );
         }
         else
         {
            ydist = 'C';
            locincy = 1;
            wksz = nq0 + MAX( mp0, tmp1 );
         }
      }
    }
    else
    {
      tmp1 = mm / desc_A[MB_];
      mp0 = MYROC0( tmp1, mm, desc_A[MB_], nprow );
      tmp2 = nn / desc_A[NB_];
      nq0 = MYROC0( tmp2, nn, desc_A[NB_], npcol );
      if( *incx == desc_X[M_] )
      {
         xdist = 'R';
         locincx = desc_X[LLD_];
         if( *incy == desc_Y[M_] )
         {
            lcmp = lcm / nprow;
            ydist = 'R';
            locincy = desc_Y[LLD_];
            tmp1 = mp0 / desc_A[MB_];
            tmp1 = MYROC0( tmp1, mp0, desc_A[MB_], lcmp );
            wksz = mp0 + MAX( tmp1, nq0 );
         }
         else
         {
            lcmp = lcm / nprow;
            lcmq = lcm / npcol;
            ydist = 'C';
            locincy = 1;
            tmp1 = mp0 / desc_A[MB_];
            tmp1 = mp0 + MYROC0( tmp1, mp0, desc_A[MB_], lcmp );
            tmp2 = nq0 / desc_A[NB_];
            tmp2 = MYROC0( tmp2, nq0, desc_A[NB_], lcmq );
            wksz = nq0 + MAX( tmp1, tmp2 );
         }
      }
      else
      {
         xdist = 'C';
         locincx = 1;
         if( *incy == desc_Y[M_] )
         {
            ydist = 'R';
            locincy = desc_Y[LLD_];
            wksz = mp0 + nq0;
         }
         else
         {
            lcmp = lcm / nprow;
            ydist = 'C';
            locincy = 1;
            tmp1 = nn / desc_A[MB_];
            np0 = MYROC0( tmp1, nn, desc_A[MB_], nprow );
            tmp1 = np0 / desc_A[MB_];
            tmp1 = MYROC0( tmp1, np0, desc_A[MB_], lcmp );
            wksz = nq0 + MAX( mp0, tmp1 );
         }
      }
   }
   buff = (float *)getpbbuf( "PSGEMV", wksz*sizeof(float) );
/*
*  Call PB-BLAS routine
*/
   if( nota && xdist == 'R' )
  {
      ctop = ptop( BROADCAST, COLUMN, TOPGET );
      pbsgemv_( &ictxt, trans, C2F_CHAR( &xdist ), C2F_CHAR( &ydist ),
                m, n, &desc_A[MB_], &desc_A[NB_], &iroffa, &icoffa, alpha,
                &A[iia-1+(jja-1)*desc_A[LLD_]], &desc_A[LLD_],
                &X[iix-1+(jjx-1)*desc_X[LLD_]], &locincx, beta,
                &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &locincy,
                &iarow, &iacol, &ixrow, &ixcol, &iyrow, &iycol,
                C2F_CHAR( ctop ), C2F_CHAR( NO ), C2F_CHAR( NO ), buff );
   }
   else if( !nota && xdist == 'C' )
   {
      rtop = ptop( BROADCAST, ROW, TOPGET );
      pbsgemv_( &ictxt, trans, C2F_CHAR( &xdist ), C2F_CHAR( &ydist ),
                m, n, &desc_A[MB_], &desc_A[NB_], &iroffa, &icoffa, alpha,
                &A[iia-1+(jja-1)*desc_A[LLD_]], &desc_A[LLD_],
                &X[iix-1+(jjx-1)*desc_X[LLD_]], &locincx, beta,
                &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &locincy,
                &iarow, &iacol, &ixrow, &ixcol, &iyrow, &iycol,
                C2F_CHAR( rtop ), C2F_CHAR( NO ), C2F_CHAR( NO ), buff );
   }
   else
   {
      pbsgemv_( &ictxt, trans, C2F_CHAR( &xdist ), C2F_CHAR( &ydist ),
                m, n, &desc_A[MB_], &desc_A[NB_], &iroffa, &icoffa, alpha,
                &A[iia-1+(jja-1)*desc_A[LLD_]], &desc_A[LLD_],
                &X[iix-1+(jjx-1)*desc_X[LLD_]], &locincx, beta,
                &Y[iiy-1+(jjy-1)*desc_Y[LLD_]], &locincy,
                &iarow, &iacol, &ixrow, &ixcol, &iyrow, &iycol,
                C2F_CHAR( TOPDEF ), C2F_CHAR( NO ), C2F_CHAR( NO ), buff );
   }
}