1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/* ---------------------------------------------------------------------
*
* -- ScaLAPACK routine (version 1.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* November 17, 1996
*
* ---------------------------------------------------------------------
*/
/*
* Include files
*/
#include "pblas.h"
void pssyr_( uplo, n, alpha, X, ix, jx, desc_X, incx, A, ia, ja,
desc_A )
/*
* .. Scalar Arguments ..
*/
F_CHAR uplo;
int * ia, * incx, * ix, * ja, * jx, * n;
float * alpha;
/* ..
* .. Array Arguments ..
*/
int desc_A[], desc_X[];
float A[], X[];
{
/*
* Purpose
* =======
*
* PSSYR performs the symmetric rank 1 operation
*
* sub( A ) := alpha*sub( X )*sub( X )' + sub( A ),
*
* where sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1),
*
* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X,
*
* alpha is a real scalar, sub( X ) is an N element distributed vector
* and sub( A ) is an N-by-N distributed symmetric matrix.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector descA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DT_A (global) descA[ DT_ ] The descriptor type. In this case,
* DT_A = 1.
* CTXT_A (global) descA[ CTXT_ ] The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) descA[ M_ ] The number of rows in the global
* array A.
* N_A (global) descA[ N_ ] The number of columns in the global
* array A.
* MB_A (global) descA[ MB_ ] The blocking factor used to distribu-
* te the rows of the array.
* NB_A (global) descA[ NB_ ] The blocking factor used to distribu-
* te the columns of the array.
* RSRC_A (global) descA[ RSRC_ ] The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) descA[ CSRC_ ] The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) descA[ LLD_ ] The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be seen as particular matrices, a distributed
* vector is considered to be a distributed matrix.
*
* If INCX = M_X, the process column having the first entries of sub( X )
* must also contain the first block of sub( A ), similarly, if INCX = 1
* and INCX <> M_X, the process row having the first entries of sub( X )
* must also contain the first block of sub( A ). It is also required
* that MB_A = NB_A and MOD(IA-1,MB_A) = MOD(JA-1,NB_A).
*
* If INCX = M_X (resp. (INCX = 1 and INCX <> M_X), the column (resp.
* row) offset of sub( X ) must be equal to the row offset of sub( A ),
* i.e MOD(JX-1,NB_X) (resp. MOD(IX-1,MB_X)) = MOD(IA-1,MB_A). Moreover,
* the column (resp. row) blocksize of X must be equal to the column
* blocksize of A, i.e NB_X = NB_A (resp. MB_X = NB_A).
*
* Parameters
* ==========
*
* UPLO (global input) pointer to CHARACTER
* On entry, UPLO specifies whether the upper or lower
* triangular part of the distributed matrix sub( A ) is to be
* referenced as follows:
*
* UPLO = 'U' or 'u' Only the upper triangular part of
* sub( A ) is to be referenced.
*
* UPLO = 'L' or 'l' Only the lower triangular part of
* sub( A ) is to be referenced.
*
* N (global input) pointer to INTEGER
* The order of the distributed matrix sub( A ). N >= 0.
*
* ALPHA (global input) pointer to REAL
* On entry, ALPHA specifies the scalar alpha.
*
* X (local input) REAL array containing the local
* pieces of a distributed matrix of dimension of at least
* ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
* This array contains the entries of the distributed vector
* sub( X ).
*
* IX (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix X to operate on.
*
* JX (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix X to operate on.
*
* DESCX (global and local input) INTEGER array of dimension 8.
* The array descriptor of the distributed matrix X.
*
* INCX (global input) pointer to INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
*
* A (local input/local output) REAL pointer into the
* local memory to an array of dimension (LLD_A,LOCc(JA+N-1).
* Before entry with UPLO = 'U' or 'u', the leading N-by-N
* upper triangular part of the distributed matrix sub( A )
* must contain the upper triangular part of the symmetric
* distributed matrix and the strictly lower triangular part
* of sub( A ) is not referenced. On exit, the upper triangular
* part of sub( A ) is overwritten by the upper triangular
* part of the updated distributed matrix.
* Before entry with UPLO = 'L' or 'l', the leading N-by-N
* lower triangular part of the distributed matrix sub( A )
* must contain the lower triangular part of the symmetric
* distributed matrix and the strictly upper triangular part
* of sub( A ) is not referenced. On exit, the lower triangular
* part of sub( A ) is overwritten by the lower triangular
* part of the updated distributed matrix.
*
* IA (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix A to operate on.
*
* JA (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix A to operate on.
*
* DESCA (global and local input) INTEGER array of dimension 8.
* The array descriptor of the distributed matrix A.
*
* =====================================================================
*
* .. Local Scalars ..
*/
char * top, UploA, xdist;
int iacol, iarow, icoffa, ictxt, iia, iix, info, iroffa,
ixcol, ixpos, ixrow, iszcmp, jja, jjx, lcm, lcmp, lcmq,
locincx, mullen, mycol, myrow, nca, nn, np0, nprow,
npcol, nra, nq0, szcmp, tmp1, tmp2, wksz;
/* ..
* .. PBLAS Buffer ..
*/
float * buff;
/* ..
* .. External Functions ..
*/
void blacs_gridinfo_();
void pbchkmat();
void pbchkvect();
void pberror_();
char * getpbbuf();
char * ptop();
F_VOID_FCT pbssyr_();
F_INTG_FCT ilcm_();
/* ..
* .. Executable Statements ..
*
* Get grid parameters
*/
ictxt = desc_X[CTXT_];
blacs_gridinfo_( &ictxt, &nprow, &npcol, &myrow, &mycol );
/*
* Test the input parameters
*/
info = 0;
if( nprow == -1 )
info = -(700+CTXT_+1);
else
{
UploA = Mupcase( F2C_CHAR( uplo )[0] );
iroffa = (*ia-1) % desc_A[MB_];
icoffa = (*ja-1) % desc_A[NB_];
pbchkvect( *n, 2, *ix, *jx, desc_X, *incx, 7, &iix, &jjx,
&ixrow, &ixcol, nprow, npcol, myrow, mycol, &info );
pbchkmat( *n, 2, *n, 2, *ia, *ja, desc_A, 12, &iia, &jja,
&iarow, &iacol, nprow, npcol, myrow, mycol,
&nra, &nca, &info );
if( info == 0 )
{
if( ( UploA != 'U' ) && ( UploA != 'L' ) )
info = -1;
else if( iroffa != icoffa )
info = -11;
if( *incx == desc_X[M_] )
{
if( ( (*jx-1) % desc_X[NB_] ) != iroffa )
info = -10;
else if( desc_A[MB_] != desc_X[NB_] )
info = -(1200+MB_+1);
else if( desc_A[MB_] != desc_A[NB_] )
info = -(1200+NB_+1);
}
else if( ( *incx == 1 ) && ( *incx != desc_X[M_] ) )
{
if( ( ( (*ix-1) % desc_X[MB_] ) != iroffa ) ||
( ixrow != iarow ) )
info = -10;
else if( desc_A[MB_] != desc_X[MB_] )
info = -(1200+MB_+1);
else if( desc_A[MB_] != desc_A[NB_] )
info = -(1200+NB_+1);
}
else
{
info = -13;
}
if( ictxt != desc_A[CTXT_] )
info = -(1200+CTXT_+1);
}
}
if( info )
{
pberror_( &ictxt, "PSSYR", &info );
return;
}
/*
* Quick return if possible.
*/
if( ( *n == 0 ) || ( *alpha == ZERO ) )
return;
/*
* Figure out the arguments to be passed to pbssyr
*/
nn = *n + iroffa;
mullen = MULLENFAC * desc_A[MB_];
lcm = ilcm_( &nprow, &npcol );
if( *incx == desc_X[M_] )
{
lcmp = lcm / nprow;
lcmq = lcm / npcol;
top = ptop( BROADCAST, COLUMN, TOPGET );
ixpos = ixrow;
xdist = 'R';
locincx = desc_X[LLD_];
tmp1 = nn / desc_A[MB_];
np0 = MYROC0( tmp1, nn, desc_A[MB_], nprow );
tmp2 = nn / desc_A[NB_];
nq0 = MYROC0( tmp2, nn, desc_A[NB_], npcol );
tmp2 = lcmq * desc_A[MB_];
iszcmp = CEIL( mullen, tmp2 );
szcmp = iszcmp * iszcmp * tmp2 * lcmp * desc_A[MB_];
tmp1 = np0 / desc_A[MB_];
tmp2 = CEIL( nn, desc_A[MB_] );
tmp1 = MYROC0( tmp1, np0, desc_A[MB_], lcmp ) * MIN( lcmp, tmp2 );
wksz = np0 + nq0 + MAX( szcmp, tmp1 );
}
else
{
lcmp = lcm / nprow;
lcmq = lcm / npcol;
top = ptop( BROADCAST, ROW, TOPGET );
ixpos = ixcol;
xdist = 'C';
locincx = 1;
tmp1 = nn / desc_A[MB_];
np0 = MYROC0( tmp1, nn, desc_A[MB_], nprow );
tmp2 = nn / desc_A[NB_];
nq0 = MYROC0( tmp2, nn, desc_A[NB_], npcol );
tmp2 = lcmq * desc_A[MB_];
iszcmp = CEIL( mullen, tmp2 );
szcmp = iszcmp * iszcmp * tmp2 * lcmp * desc_A[MB_];
tmp1 = nq0 / desc_A[NB_];
tmp2 = CEIL( nn, desc_A[NB_] );
tmp1 = MYROC0( tmp1, nq0, desc_A[NB_], lcmq ) * MIN( lcmq, tmp2 );
wksz = np0 + nq0 + MAX( szcmp, tmp1 );
}
buff = (float *)getpbbuf( "PSSYR", wksz*sizeof(float) );
/*
* Call PB-BLAS routine
*/
pbssyr_( &ictxt, uplo, C2F_CHAR( &xdist ), n, &desc_A[MB_], &iroffa,
alpha, &X[iix-1+(jjx-1)*desc_X[LLD_]], &locincx,
&A[iia-1+(jja-1)*desc_A[LLD_]], &desc_A[LLD_],
&ixpos, &iarow, &iacol, C2F_CHAR( top ), C2F_CHAR( NO ),
C2F_CHAR( NO ), &mullen, buff );
}
|