File: pzscal_.c

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (203 lines) | stat: -rw-r--r-- 6,874 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/* ---------------------------------------------------------------------
*
*  -- ScaLAPACK routine (version 1.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     November 17, 1996
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"

void pzscal_( n, alpha, X, ix, jx, desc_X, incx )
/*
*  .. Scalar Arguments ..
*/
   int         * incx, * ix, * jx, * n;
   complex16   * alpha;
/* ..
*  .. Array Arguments ..
*/
   int         desc_X[];
   complex16   X[];
{
/*
*  Purpose
*  =======
*
*  PZSCAL multiplies an N-element complex distributed vector sub( X )
*  by the complex scalar alpha,
*
*  where sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
*                         X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector descA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DT_A   (global) descA[ DT_ ]   The descriptor type.  In this case,
*                                 DT_A = 1.
*  CTXT_A (global) descA[ CTXT_ ] The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) descA[ M_ ]    The number of rows in the global
*                                 array A.
*  N_A    (global) descA[ N_ ]    The number of columns in the global
*                                 array A.
*  MB_A   (global) descA[ MB_ ]   The blocking factor used to distribu-
*                                 te the rows of the array.
*  NB_A   (global) descA[ NB_ ]   The blocking factor used to distribu-
*                                 te the columns of the array.
*  RSRC_A (global) descA[ RSRC_ ] The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) descA[ CSRC_ ] The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  descA[ LLD_ ]  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be seen as particular matrices, a distributed
*  vector is considered to be a distributed matrix.
*
*  Arguments
*  =========
*
*  N       (global input) pointer to INTEGER
*          The number of components of the distributed vector sub( X ).
*          N >= 0.
*
*  ALPHA   (global input) pointer to COMPLEX*16
*          The scalar used to multiply each component of sub( X ).
*
*  X       (local input/local output) COMPLEX*16 array
*          containing the local pieces of a distributed matrix of
*          dimension of at least
*              ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
*          This array contains the entries of the distributed vector
*          sub( X ).
*
*  IX      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix X to operate on.
*
*  JX      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix X to operate on.
*
*  DESCX   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix X.
*
*  INCX    (global input) pointer to INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*
*  =====================================================================
*
*  .. Local Scalars ..
*/
   int         ictxt, iix, info, ixcol, ixrow, jjx, mycol, myrow, nn,
               np, nprow, npcol, nq, nz;
/* ..
*  .. External Functions ..
*/
   void        blacs_gridinfo_();
   void        pbchkvect();
   void        pberror_();
   F_VOID_FCT  zscal_();
   F_INTG_FCT  numroc_();
/* ..
*  .. Executable Statements ..
*
*  Get grid parameters
*/
   ictxt = desc_X[CTXT_];
   blacs_gridinfo_( &ictxt, &nprow, &npcol, &myrow, &mycol );
/*
*  Test the input parameters
*/
   info = 0;
   if( nprow == -1 )
      info = -(600+CTXT_+1);
   else
      pbchkvect( *n, 1, *ix, *jx, desc_X, *incx, 6, &iix, &jjx, &ixrow,
                 &ixcol, nprow, npcol, myrow, mycol, &info );
   if( info )
   {
      pberror_( &ictxt, "PZSCAL", &info );
      return;
   }
/*
*  Quick return if possible.
*/
   if( *n == 0 )
      return;
/*
*  Scale the vector
*/
   if( *n == 1 )
   {
      if( ( myrow == ixrow ) && ( mycol == ixcol ) )
         zscal_( n, alpha, &X[iix-1+(jjx-1)*desc_X[LLD_]], n );
      return;
   }

   if( *incx == desc_X[M_] )
   {
      if( myrow == ixrow )
      {
         nz = (*jx-1) % desc_X[NB_];
         nn = *n + nz;
         nq = numroc_( &nn, &desc_X[NB_], &mycol, &ixcol, &npcol );
         if( mycol == ixcol )
            nq -= nz;
         if( nq > 0 )
            zscal_( &nq, alpha, &X[iix-1+(jjx-1)*desc_X[LLD_]],
                    &desc_X[LLD_] );
      }
   }
   else
   {
      if( mycol == ixcol )
      {
         nz = (*ix-1) % desc_X[MB_];
         nn = *n + nz;
         np = numroc_( &nn, &desc_X[MB_], &myrow, &ixrow, &nprow );
         if( myrow == ixrow )
            np -= nz;
         if( np > 0 )
            zscal_( &np, alpha, &X[iix-1+(jjx-1)*desc_X[LLD_]], incx );
      }
   }
}