1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
|
SUBROUTINE CPTTRF( N, D, E, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX E( * )
* ..
*
* Purpose
* =======
*
* CPTTRF computes the factorization of a complex Hermitian positive
* definite tridiagonal matrix A.
*
* If the subdiagonal elements of A are supplied in the array E, the
* factorization has the form A = L*D*L**H, where D is diagonal and L
* is unit lower bidiagonal; if the superdiagonal elements of A are
* supplied, it has the form A = U**H*D*U, where U is unit upper
* bidiagonal.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* D (input/output) REAL array, dimension (N)
* On entry, the n diagonal elements of the tridiagonal matrix
* A. On exit, the n diagonal elements of the diagonal matrix
* D from the L*D*L**H factorization of A.
*
* E (input/output) COMPLEX array, dimension (N-1)
* On entry, the (n-1) off-diagonal elements of the tridiagonal
* matrix A. On exit, the (n-1) off-diagonal elements of the
* unit bidiagonal factor L or U from the factorization of A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i is not
* positive definite; if i < N, the factorization could
* not be completed, while if i = N, the factorization was
* completed, but D(N) = 0.
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL DI, EII, EIR, F, G
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, CMPLX, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
CALL XERBLA( 'CPTTRF', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the L*D*L' (or U'*D*U) factorization of A.
*
DO 10 I = 1, N - 1
*
* Drop out of the loop if d(i) <= 0: the matrix is not positive
* definite.
*
DI = D( I )
IF( DI.LE.ZERO )
$ GO TO 20
*
* Solve for e(i) and d(i+1).
*
EIR = REAL( E( I ) )
EII = AIMAG( E( I ) )
F = EIR / DI
G = EII / DI
E( I ) = CMPLX( F, G )
D( I+1 ) = D( I+1 ) - F*EIR - G*EII
10 CONTINUE
*
* Check d(n) for positive definiteness.
*
I = N
IF( D( I ).GT.ZERO )
$ GO TO 30
*
20 CONTINUE
INFO = I
*
30 CONTINUE
RETURN
*
* End of CPTTRF
*
END
|