File: dlanv2.f

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (175 lines) | stat: -rw-r--r-- 4,723 bytes parent folder | download | duplicates (22)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
*
*  -- LAPACK auxiliary routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994 
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
*     ..
*
*  Purpose
*  =======
*
*  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
*  matrix in standard form:
*
*       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
*       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
*
*  where either
*  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
*  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
*  conjugate eigenvalues.
*
*  Arguments
*  =========
*
*  A       (input/output) DOUBLE PRECISION
*  B       (input/output) DOUBLE PRECISION
*  C       (input/output) DOUBLE PRECISION
*  D       (input/output) DOUBLE PRECISION
*          On entry, the elements of the input matrix.
*          On exit, they are overwritten by the elements of the
*          standardised Schur form.
*
*  RT1R    (output) DOUBLE PRECISION
*  RT1I    (output) DOUBLE PRECISION
*  RT2R    (output) DOUBLE PRECISION
*  RT2I    (output) DOUBLE PRECISION
*          The real and imaginary parts of the eigenvalues. If the
*          eigenvalues are both real, abs(RT1R) >= abs(RT2R); if the
*          eigenvalues are a complex conjugate pair, RT1I > 0.
*
*  CS      (output) DOUBLE PRECISION
*  SN      (output) DOUBLE PRECISION
*          Parameters of the rotation matrix.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, HALF, ONE
      PARAMETER          ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   AA, BB, CC, CS1, DD, P, SAB, SAC, SIGMA, SN1,
     $                   TAU, TEMP
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAPY2
      EXTERNAL           DLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Initialize CS and SN
*
      CS = ONE
      SN = ZERO
*
      IF( C.EQ.ZERO ) THEN
         GO TO 10
*
      ELSE IF( B.EQ.ZERO ) THEN
*
*        Swap rows and columns
*
         CS = ZERO
         SN = ONE
         TEMP = D
         D = A
         A = TEMP
         B = -C
         C = ZERO
         GO TO 10
      ELSE IF( (A-D).EQ.ZERO .AND. SIGN( ONE, B ).NE.
     $   SIGN( ONE, C ) ) THEN
         GO TO 10
      ELSE
*
*        Make diagonal elements equal
*
         TEMP = A - D
         P = HALF*TEMP
         SIGMA = B + C
         TAU = DLAPY2( SIGMA, TEMP )
         CS1 = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
         SN1 = -( P / ( TAU*CS1 ) )*SIGN( ONE, SIGMA )
*
*        Compute [ AA  BB ] = [ A  B ] [ CS1 -SN1 ]
*                [ CC  DD ]   [ C  D ] [ SN1  CS1 ]
*
         AA = A*CS1 + B*SN1
         BB = -A*SN1 + B*CS1
         CC = C*CS1 + D*SN1
         DD = -C*SN1 + D*CS1
*
*        Compute [ A  B ] = [ CS1  SN1 ] [ AA  BB ]
*                [ C  D ]   [-SN1  CS1 ] [ CC  DD ]
*
         A = AA*CS1 + CC*SN1
         B = BB*CS1 + DD*SN1
         C = -AA*SN1 + CC*CS1
         D = -BB*SN1 + DD*CS1
*
*        Accumulate transformation
*
         TEMP = CS*CS1 - SN*SN1
         SN = CS*SN1 + SN*CS1
         CS = TEMP
*
         TEMP = HALF*( A+D )
         A = TEMP
         D = TEMP
*
         IF( C.NE.ZERO ) THEN
            IF( B.NE.ZERO ) THEN
               IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
*
*                 Real eigenvalues: reduce to upper triangular form
*
                  SAB = SQRT( ABS( B ) )
                  SAC = SQRT( ABS( C ) )
                  P = SIGN( SAB*SAC, C )
                  TAU = ONE / SQRT( ABS( B+C ) )
                  A = TEMP + P
                  D = TEMP - P
                  B = B - C
                  C = ZERO
                  CS1 = SAB*TAU
                  SN1 = SAC*TAU
                  TEMP = CS*CS1 - SN*SN1
                  SN = CS*SN1 + SN*CS1
                  CS = TEMP
               END IF
            ELSE
               B = -C
               C = ZERO
               TEMP = CS
               CS = -SN
               SN = TEMP
            END IF
         END IF
      END IF
*
   10 CONTINUE
*
*     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
      RT1R = A
      RT2R = D
      IF( C.EQ.ZERO ) THEN
         RT1I = ZERO
         RT2I = ZERO
      ELSE
         RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
         RT2I = -RT1I
      END IF
      RETURN
*
*     End of DLANV2
*
      END