1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN )
*
* -- LAPACK auxiliary routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN
* ..
*
* Purpose
* =======
*
* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
* matrix in standard form:
*
* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ]
* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ]
*
* where either
* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
* conjugate eigenvalues.
*
* Arguments
* =========
*
* A (input/output) DOUBLE PRECISION
* B (input/output) DOUBLE PRECISION
* C (input/output) DOUBLE PRECISION
* D (input/output) DOUBLE PRECISION
* On entry, the elements of the input matrix.
* On exit, they are overwritten by the elements of the
* standardised Schur form.
*
* RT1R (output) DOUBLE PRECISION
* RT1I (output) DOUBLE PRECISION
* RT2R (output) DOUBLE PRECISION
* RT2I (output) DOUBLE PRECISION
* The real and imaginary parts of the eigenvalues. If the
* eigenvalues are both real, abs(RT1R) >= abs(RT2R); if the
* eigenvalues are a complex conjugate pair, RT1I > 0.
*
* CS (output) DOUBLE PRECISION
* SN (output) DOUBLE PRECISION
* Parameters of the rotation matrix.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION AA, BB, CC, CS1, DD, P, SAB, SAC, SIGMA, SN1,
$ TAU, TEMP
* ..
* .. External Functions ..
DOUBLE PRECISION DLAPY2
EXTERNAL DLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SIGN, SQRT
* ..
* .. Executable Statements ..
*
* Initialize CS and SN
*
CS = ONE
SN = ZERO
*
IF( C.EQ.ZERO ) THEN
GO TO 10
*
ELSE IF( B.EQ.ZERO ) THEN
*
* Swap rows and columns
*
CS = ZERO
SN = ONE
TEMP = D
D = A
A = TEMP
B = -C
C = ZERO
GO TO 10
ELSE IF( (A-D).EQ.ZERO .AND. SIGN( ONE, B ).NE.
$ SIGN( ONE, C ) ) THEN
GO TO 10
ELSE
*
* Make diagonal elements equal
*
TEMP = A - D
P = HALF*TEMP
SIGMA = B + C
TAU = DLAPY2( SIGMA, TEMP )
CS1 = SQRT( HALF*( ONE+ABS( SIGMA ) / TAU ) )
SN1 = -( P / ( TAU*CS1 ) )*SIGN( ONE, SIGMA )
*
* Compute [ AA BB ] = [ A B ] [ CS1 -SN1 ]
* [ CC DD ] [ C D ] [ SN1 CS1 ]
*
AA = A*CS1 + B*SN1
BB = -A*SN1 + B*CS1
CC = C*CS1 + D*SN1
DD = -C*SN1 + D*CS1
*
* Compute [ A B ] = [ CS1 SN1 ] [ AA BB ]
* [ C D ] [-SN1 CS1 ] [ CC DD ]
*
A = AA*CS1 + CC*SN1
B = BB*CS1 + DD*SN1
C = -AA*SN1 + CC*CS1
D = -BB*SN1 + DD*CS1
*
* Accumulate transformation
*
TEMP = CS*CS1 - SN*SN1
SN = CS*SN1 + SN*CS1
CS = TEMP
*
TEMP = HALF*( A+D )
A = TEMP
D = TEMP
*
IF( C.NE.ZERO ) THEN
IF( B.NE.ZERO ) THEN
IF( SIGN( ONE, B ).EQ.SIGN( ONE, C ) ) THEN
*
* Real eigenvalues: reduce to upper triangular form
*
SAB = SQRT( ABS( B ) )
SAC = SQRT( ABS( C ) )
P = SIGN( SAB*SAC, C )
TAU = ONE / SQRT( ABS( B+C ) )
A = TEMP + P
D = TEMP - P
B = B - C
C = ZERO
CS1 = SAB*TAU
SN1 = SAC*TAU
TEMP = CS*CS1 - SN*SN1
SN = CS*SN1 + SN*CS1
CS = TEMP
END IF
ELSE
B = -C
C = ZERO
TEMP = CS
CS = -SN
SN = TEMP
END IF
END IF
END IF
*
10 CONTINUE
*
* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
*
RT1R = A
RT2R = D
IF( C.EQ.ZERO ) THEN
RT1I = ZERO
RT2I = ZERO
ELSE
RT1I = SQRT( ABS( B ) )*SQRT( ABS( C ) )
RT2I = -RT1I
END IF
RETURN
*
* End of DLANV2
*
END
|