1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
SUBROUTINE DLASQ1( N, D, E, WORK, INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 15, 1996
*
* .. Scalar Arguments ..
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * ), E( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLASQ1 computes the singular values of a real N-by-N bidiagonal
* matrix with diagonal D and off-diagonal E. The singular values are
* computed to high relative accuracy, barring over/underflow or
* denormalization. The algorithm is described in
*
* "Accurate singular values and differential qd algorithms," by
* K. V. Fernando and B. N. Parlett,
* Numer. Math., Vol-67, No. 2, pp. 191-230,1994.
*
* See also
* "Implementation of differential qd algorithms," by
* K. V. Fernando and B. N. Parlett, Technical Report,
* Department of Mathematics, University of California at Berkeley,
* 1994 (Under preparation).
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of rows and columns in the matrix. N >= 0.
*
* D (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, D contains the diagonal elements of the
* bidiagonal matrix whose SVD is desired. On normal exit,
* D contains the singular values in decreasing order.
*
* E (input/output) DOUBLE PRECISION array, dimension (N)
* On entry, elements E(1:N-1) contain the off-diagonal elements
* of the bidiagonal matrix whose SVD is desired.
* On exit, E is overwritten.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the algorithm did not converge; i
* specifies how many superdiagonals did not converge.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION MEIGTH
PARAMETER ( MEIGTH = -0.125D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TEN
PARAMETER ( TEN = 10.0D0 )
DOUBLE PRECISION HUNDRD
PARAMETER ( HUNDRD = 100.0D0 )
DOUBLE PRECISION TWO56
PARAMETER ( TWO56 = 256.0D0 )
* ..
* .. Local Scalars ..
LOGICAL RESTRT
INTEGER I, IERR, J, KE, KEND, M, NY
DOUBLE PRECISION DM, DX, EPS, SCL, SFMIN, SIG1, SIG2, SIGMN,
$ SIGMX, SMALL2, THRESH, TOL, TOL2, TOLMUL
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DLAS2, DLASCL, DLASQ2, DLASRT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SQRT
* ..
* .. Executable Statements ..
INFO = 0
IF( N.LT.0 ) THEN
INFO = -2
CALL XERBLA( 'DLASQ1', -INFO )
RETURN
ELSE IF( N.EQ.0 ) THEN
RETURN
ELSE IF( N.EQ.1 ) THEN
D( 1 ) = ABS( D( 1 ) )
RETURN
ELSE IF( N.EQ.2 ) THEN
CALL DLAS2( D( 1 ), E( 1 ), D( 2 ), SIGMN, SIGMX )
D( 1 ) = SIGMX
D( 2 ) = SIGMN
RETURN
END IF
*
* Estimate the largest singular value
*
SIGMX = ZERO
DO 10 I = 1, N - 1
D( I ) = ABS( D( I ) )
SIGMX = MAX( SIGMX, ABS( E( I ) ) )
10 CONTINUE
D( N ) = ABS( D( N ) )
*
* Early return if sigmx is zero (matrix is already diagonal)
*
IF( SIGMX.EQ.ZERO )
$ GO TO 70
*
DO 20 I = 1, N
SIGMX = MAX( SIGMX, D( I ) )
20 CONTINUE
*
* Get machine parameters
*
EPS = DLAMCH( 'EPSILON' )
SFMIN = DLAMCH( 'SAFE MINIMUM' )
*
* Compute singular values to relative accuracy TOL
* It is assumed that tol**2 does not underflow.
*
TOLMUL = MAX( TEN, MIN( HUNDRD, EPS**( -MEIGTH ) ) )
TOL = TOLMUL*EPS
TOL2 = TOL**2
*
THRESH = SIGMX*SQRT( SFMIN )*TOL
*
* Scale matrix so the square of the largest element is
* 1 / ( 256 * SFMIN )
*
SCL = SQRT( ONE / ( TWO56*SFMIN ) )
SMALL2 = ONE / ( TWO56*TOLMUL**2 )
CALL DCOPY( N, D, 1, WORK( 1 ), 1 )
CALL DCOPY( N-1, E, 1, WORK( N+1 ), 1 )
CALL DLASCL( 'G', 0, 0, SIGMX, SCL, N, 1, WORK( 1 ), N, IERR )
CALL DLASCL( 'G', 0, 0, SIGMX, SCL, N-1, 1, WORK( N+1 ), N-1,
$ IERR )
*
* Square D and E (the input for the qd algorithm)
*
DO 30 J = 1, 2*N - 1
WORK( J ) = WORK( J )**2
30 CONTINUE
*
* Apply qd algorithm
*
M = 0
E( N ) = ZERO
DX = WORK( 1 )
DM = DX
KE = 0
RESTRT = .FALSE.
WORK( N+N ) = ZERO
DO 60 I = 1, N
IF( ABS( E( I ) ).LE.THRESH .OR. WORK( N+I ).LE.TOL2*
$ ( DM / DBLE( I-M ) ) ) THEN
NY = I - M
IF( NY.EQ.1 ) THEN
GO TO 50
ELSE IF( NY.EQ.2 ) THEN
CALL DLAS2( D( M+1 ), E( M+1 ), D( M+2 ), SIG1, SIG2 )
D( M+1 ) = SIG1
D( M+2 ) = SIG2
ELSE
KEND = KE + 1 - M
CALL DLASQ2( NY, D( M+1 ), E( M+1 ), WORK( M+1 ),
$ WORK( M+N+1 ), EPS, TOL2, SMALL2, DM, KEND,
$ INFO )
*
* Return, INFO = number of unconverged superdiagonals
*
IF( INFO.NE.0 ) THEN
INFO = INFO + M
RETURN
END IF
*
* Undo scaling
*
DO 40 J = M + 1, M + NY
D( J ) = SQRT( D( J ) )
40 CONTINUE
CALL DLASCL( 'G', 0, 0, SCL, SIGMX, NY, 1, D( M+1 ), NY,
$ IERR )
END IF
50 CONTINUE
M = I
IF( I.NE.N ) THEN
DX = WORK( I+1 )
DM = DX
KE = I
RESTRT = .TRUE.
END IF
END IF
IF( I.NE.N .AND. .NOT.RESTRT ) THEN
DX = WORK( I+1 )*( DX / ( DX+WORK( N+I ) ) )
IF( DM.GT.DX ) THEN
DM = DX
KE = I
END IF
END IF
RESTRT = .FALSE.
60 CONTINUE
KEND = KE + 1
*
* Sort the singular values into decreasing order
*
70 CONTINUE
CALL DLASRT( 'D', N, D, INFO )
RETURN
*
* End of DLASQ1
*
END
|