File: dlasq2.f

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (268 lines) | stat: -rw-r--r-- 8,706 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
      SUBROUTINE DLASQ2( M, Q, E, QQ, EE, EPS, TOL2, SMALL2, SUP, KEND,
     $                   INFO )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KEND, M
      DOUBLE PRECISION   EPS, SMALL2, SUP, TOL2
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   E( * ), EE( * ), Q( * ), QQ( * )
*     ..
*
*     Purpose
*     =======
*
*     DLASQ2 computes the singular values of a real N-by-N unreduced
*     bidiagonal matrix with squared diagonal elements in Q and
*     squared off-diagonal elements in E. The singular values are
*     computed to relative accuracy TOL, barring over/underflow or
*     denormalization.
*
*     Arguments
*     =========
*
*  M       (input) INTEGER
*          The number of rows and columns in the matrix. M >= 0.
*
*  Q       (output) DOUBLE PRECISION array, dimension (M)
*          On normal exit, contains the squared singular values.
*
*  E       (workspace) DOUBLE PRECISION array, dimension (M)
*
*  QQ      (input/output) DOUBLE PRECISION array, dimension (M)
*          On entry, QQ contains the squared diagonal elements of the
*          bidiagonal matrix whose SVD is desired.
*          On exit, QQ is overwritten.
*
*  EE      (input/output) DOUBLE PRECISION array, dimension (M)
*          On entry, EE(1:N-1) contains the squared off-diagonal
*          elements of the bidiagonal matrix whose SVD is desired.
*          On exit, EE is overwritten.
*
*  EPS     (input) DOUBLE PRECISION
*          Machine epsilon.
*
*  TOL2    (input) DOUBLE PRECISION
*          Desired relative accuracy of computed eigenvalues
*          as defined in DLASQ1.
*
*  SMALL2  (input) DOUBLE PRECISION
*          A threshold value as defined in DLASQ1.
*
*  SUP     (input/output) DOUBLE PRECISION
*          Upper bound for the smallest eigenvalue.
*
*  KEND    (input/output) INTEGER
*          Index where minimum d occurs.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the algorithm did not converge;  i
*                specifies how many superdiagonals did not converge.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
      DOUBLE PRECISION   FOUR, HALF
      PARAMETER          ( FOUR = 4.0D+0, HALF = 0.5D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            ICONV, IPHASE, ISP, N, OFF, OFF1
      DOUBLE PRECISION   QEMAX, SIGMA, XINF, XX, YY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASQ3
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, NINT, SQRT
*     ..
*     .. Executable Statements ..
      N = M
*
*     Set the default maximum number of iterations
*
      OFF = 0
      OFF1 = OFF + 1
      SIGMA = ZERO
      XINF = ZERO
      ICONV = 0
      IPHASE = 2
*
*     Try deflation at the bottom
*
*     1x1 deflation
*
   10 CONTINUE
      IF( N.LE.2 )
     $   GO TO 20
      IF( EE( N-1 ).LE.MAX( QQ( N ), XINF, SMALL2 )*TOL2 ) THEN
         Q( N ) = QQ( N )
         N = N - 1
         IF( KEND.GT.N )
     $      KEND = N
         SUP = MIN( QQ( N ), QQ( N-1 ) )
         GO TO 10
      END IF
*
*     2x2 deflation
*
      IF( EE( N-2 ).LE.MAX( XINF, SMALL2,
     $    ( QQ( N ) / ( QQ( N )+EE( N-1 )+QQ( N-1 ) ) )*QQ( N-1 ) )*
     $    TOL2 ) THEN
         QEMAX = MAX( QQ( N ), QQ( N-1 ), EE( N-1 ) )
         IF( QEMAX.NE.ZERO ) THEN
            IF( QEMAX.EQ.QQ( N-1 ) ) THEN
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
            ELSE IF( QEMAX.EQ.QQ( N ) ) THEN
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N-1 )-QQ( N )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
            ELSE
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*QQ( N-1 ) / QEMAX ) )
            END IF
            YY = ( MAX( QQ( N ), QQ( N-1 ) ) / XX )*
     $           MIN( QQ( N ), QQ( N-1 ) )
         ELSE
            XX = ZERO
            YY = ZERO
         END IF
         Q( N-1 ) = XX
         Q( N ) = YY
         N = N - 2
         IF( KEND.GT.N )
     $      KEND = N
         SUP = QQ( N )
         GO TO 10
      END IF
*
   20 CONTINUE
      IF( N.EQ.0 ) THEN
*
*         The lower branch is finished
*
         IF( OFF.EQ.0 ) THEN
*
*         No upper branch; return to DLASQ1
*
            RETURN
         ELSE
*
*         Going back to upper branch
*
            XINF = ZERO
            IF( EE( OFF ).GT.ZERO ) THEN
               ISP = NINT( EE( OFF ) )
               IPHASE = 1
            ELSE
               ISP = -NINT( EE( OFF ) )
               IPHASE = 2
            END IF
            SIGMA = E( OFF )
            N = OFF - ISP + 1
            OFF1 = ISP
            OFF = OFF1 - 1
            IF( N.LE.2 )
     $         GO TO 20
            IF( IPHASE.EQ.1 ) THEN
               SUP = MIN( Q( N+OFF ), Q( N-1+OFF ), Q( N-2+OFF ) )
            ELSE
               SUP = MIN( QQ( N+OFF ), QQ( N-1+OFF ), QQ( N-2+OFF ) )
            END IF
            KEND = 0
            ICONV = -3
         END IF
      ELSE IF( N.EQ.1 ) THEN
*
*     1x1 Solver
*
         IF( IPHASE.EQ.1 ) THEN
            Q( OFF1 ) = Q( OFF1 ) + SIGMA
         ELSE
            Q( OFF1 ) = QQ( OFF1 ) + SIGMA
         END IF
         N = 0
         GO TO 20
*
*     2x2 Solver
*
      ELSE IF( N.EQ.2 ) THEN
         IF( IPHASE.EQ.2 ) THEN
            QEMAX = MAX( QQ( N+OFF ), QQ( N-1+OFF ), EE( N-1+OFF ) )
            IF( QEMAX.NE.ZERO ) THEN
               IF( QEMAX.EQ.QQ( N-1+OFF ) ) THEN
                  XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( QQ( N+OFF )-QQ( N-1+OFF )+EE( N-
     $                 1+OFF ) ) / QEMAX )**2+FOUR*EE( OFF+N-1 ) /
     $                 QEMAX ) )
               ELSE IF( QEMAX.EQ.QQ( N+OFF ) ) THEN
                  XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( QQ( N-1+OFF )-QQ( N+OFF )+EE( N-
     $                 1+OFF ) ) / QEMAX )**2+FOUR*EE( N-1+OFF ) /
     $                 QEMAX ) )
               ELSE
                  XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( QQ( N+OFF )-QQ( N-1+OFF )+EE( N-
     $                 1+OFF ) ) / QEMAX )**2+FOUR*QQ( N-1+OFF ) /
     $                 QEMAX ) )
               END IF
               YY = ( MAX( QQ( N+OFF ), QQ( N-1+OFF ) ) / XX )*
     $              MIN( QQ( N+OFF ), QQ( N-1+OFF ) )
            ELSE
               XX = ZERO
               YY = ZERO
            END IF
         ELSE
            QEMAX = MAX( Q( N+OFF ), Q( N-1+OFF ), E( N-1+OFF ) )
            IF( QEMAX.NE.ZERO ) THEN
               IF( QEMAX.EQ.Q( N-1+OFF ) ) THEN
                  XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( Q( N+OFF )-Q( N-1+OFF )+E( N-1+
     $                 OFF ) ) / QEMAX )**2+FOUR*E( N-1+OFF ) /
     $                 QEMAX ) )
               ELSE IF( QEMAX.EQ.Q( N+OFF ) ) THEN
                  XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( Q( N-1+OFF )-Q( N+OFF )+E( N-1+
     $                 OFF ) ) / QEMAX )**2+FOUR*E( N-1+OFF ) /
     $                 QEMAX ) )
               ELSE
                  XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
     $                 QEMAX*SQRT( ( ( Q( N+OFF )-Q( N-1+OFF )+E( N-1+
     $                 OFF ) ) / QEMAX )**2+FOUR*Q( N-1+OFF ) /
     $                 QEMAX ) )
               END IF
               YY = ( MAX( Q( N+OFF ), Q( N-1+OFF ) ) / XX )*
     $              MIN( Q( N+OFF ), Q( N-1+OFF ) )
            ELSE
               XX = ZERO
               YY = ZERO
            END IF
         END IF
         Q( N-1+OFF ) = SIGMA + XX
         Q( N+OFF ) = YY + SIGMA
         N = 0
         GO TO 20
      END IF
      CALL DLASQ3( N, Q( OFF1 ), E( OFF1 ), QQ( OFF1 ), EE( OFF1 ), SUP,
     $             SIGMA, KEND, OFF, IPHASE, ICONV, EPS, TOL2, SMALL2 )
      IF( SUP.LT.ZERO ) THEN
         INFO = N + OFF
         RETURN
      END IF
      OFF1 = OFF + 1
      GO TO 20
*
*     End of DLASQ2
*
      END