1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
SUBROUTINE DLASQ2( M, Q, E, QQ, EE, EPS, TOL2, SMALL2, SUP, KEND,
$ INFO )
*
* -- LAPACK routine (version 2.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, KEND, M
DOUBLE PRECISION EPS, SMALL2, SUP, TOL2
* ..
* .. Array Arguments ..
DOUBLE PRECISION E( * ), EE( * ), Q( * ), QQ( * )
* ..
*
* Purpose
* =======
*
* DLASQ2 computes the singular values of a real N-by-N unreduced
* bidiagonal matrix with squared diagonal elements in Q and
* squared off-diagonal elements in E. The singular values are
* computed to relative accuracy TOL, barring over/underflow or
* denormalization.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows and columns in the matrix. M >= 0.
*
* Q (output) DOUBLE PRECISION array, dimension (M)
* On normal exit, contains the squared singular values.
*
* E (workspace) DOUBLE PRECISION array, dimension (M)
*
* QQ (input/output) DOUBLE PRECISION array, dimension (M)
* On entry, QQ contains the squared diagonal elements of the
* bidiagonal matrix whose SVD is desired.
* On exit, QQ is overwritten.
*
* EE (input/output) DOUBLE PRECISION array, dimension (M)
* On entry, EE(1:N-1) contains the squared off-diagonal
* elements of the bidiagonal matrix whose SVD is desired.
* On exit, EE is overwritten.
*
* EPS (input) DOUBLE PRECISION
* Machine epsilon.
*
* TOL2 (input) DOUBLE PRECISION
* Desired relative accuracy of computed eigenvalues
* as defined in DLASQ1.
*
* SMALL2 (input) DOUBLE PRECISION
* A threshold value as defined in DLASQ1.
*
* SUP (input/output) DOUBLE PRECISION
* Upper bound for the smallest eigenvalue.
*
* KEND (input/output) INTEGER
* Index where minimum d occurs.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the algorithm did not converge; i
* specifies how many superdiagonals did not converge.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
DOUBLE PRECISION FOUR, HALF
PARAMETER ( FOUR = 4.0D+0, HALF = 0.5D+0 )
* ..
* .. Local Scalars ..
INTEGER ICONV, IPHASE, ISP, N, OFF, OFF1
DOUBLE PRECISION QEMAX, SIGMA, XINF, XX, YY
* ..
* .. External Subroutines ..
EXTERNAL DLASQ3
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, NINT, SQRT
* ..
* .. Executable Statements ..
N = M
*
* Set the default maximum number of iterations
*
OFF = 0
OFF1 = OFF + 1
SIGMA = ZERO
XINF = ZERO
ICONV = 0
IPHASE = 2
*
* Try deflation at the bottom
*
* 1x1 deflation
*
10 CONTINUE
IF( N.LE.2 )
$ GO TO 20
IF( EE( N-1 ).LE.MAX( QQ( N ), XINF, SMALL2 )*TOL2 ) THEN
Q( N ) = QQ( N )
N = N - 1
IF( KEND.GT.N )
$ KEND = N
SUP = MIN( QQ( N ), QQ( N-1 ) )
GO TO 10
END IF
*
* 2x2 deflation
*
IF( EE( N-2 ).LE.MAX( XINF, SMALL2,
$ ( QQ( N ) / ( QQ( N )+EE( N-1 )+QQ( N-1 ) ) )*QQ( N-1 ) )*
$ TOL2 ) THEN
QEMAX = MAX( QQ( N ), QQ( N-1 ), EE( N-1 ) )
IF( QEMAX.NE.ZERO ) THEN
IF( QEMAX.EQ.QQ( N-1 ) ) THEN
XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
$ SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
$ QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
ELSE IF( QEMAX.EQ.QQ( N ) ) THEN
XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
$ SQRT( ( ( QQ( N-1 )-QQ( N )+EE( N-1 ) ) /
$ QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
ELSE
XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
$ SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
$ QEMAX )**2+FOUR*QQ( N-1 ) / QEMAX ) )
END IF
YY = ( MAX( QQ( N ), QQ( N-1 ) ) / XX )*
$ MIN( QQ( N ), QQ( N-1 ) )
ELSE
XX = ZERO
YY = ZERO
END IF
Q( N-1 ) = XX
Q( N ) = YY
N = N - 2
IF( KEND.GT.N )
$ KEND = N
SUP = QQ( N )
GO TO 10
END IF
*
20 CONTINUE
IF( N.EQ.0 ) THEN
*
* The lower branch is finished
*
IF( OFF.EQ.0 ) THEN
*
* No upper branch; return to DLASQ1
*
RETURN
ELSE
*
* Going back to upper branch
*
XINF = ZERO
IF( EE( OFF ).GT.ZERO ) THEN
ISP = NINT( EE( OFF ) )
IPHASE = 1
ELSE
ISP = -NINT( EE( OFF ) )
IPHASE = 2
END IF
SIGMA = E( OFF )
N = OFF - ISP + 1
OFF1 = ISP
OFF = OFF1 - 1
IF( N.LE.2 )
$ GO TO 20
IF( IPHASE.EQ.1 ) THEN
SUP = MIN( Q( N+OFF ), Q( N-1+OFF ), Q( N-2+OFF ) )
ELSE
SUP = MIN( QQ( N+OFF ), QQ( N-1+OFF ), QQ( N-2+OFF ) )
END IF
KEND = 0
ICONV = -3
END IF
ELSE IF( N.EQ.1 ) THEN
*
* 1x1 Solver
*
IF( IPHASE.EQ.1 ) THEN
Q( OFF1 ) = Q( OFF1 ) + SIGMA
ELSE
Q( OFF1 ) = QQ( OFF1 ) + SIGMA
END IF
N = 0
GO TO 20
*
* 2x2 Solver
*
ELSE IF( N.EQ.2 ) THEN
IF( IPHASE.EQ.2 ) THEN
QEMAX = MAX( QQ( N+OFF ), QQ( N-1+OFF ), EE( N-1+OFF ) )
IF( QEMAX.NE.ZERO ) THEN
IF( QEMAX.EQ.QQ( N-1+OFF ) ) THEN
XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
$ QEMAX*SQRT( ( ( QQ( N+OFF )-QQ( N-1+OFF )+EE( N-
$ 1+OFF ) ) / QEMAX )**2+FOUR*EE( OFF+N-1 ) /
$ QEMAX ) )
ELSE IF( QEMAX.EQ.QQ( N+OFF ) ) THEN
XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
$ QEMAX*SQRT( ( ( QQ( N-1+OFF )-QQ( N+OFF )+EE( N-
$ 1+OFF ) ) / QEMAX )**2+FOUR*EE( N-1+OFF ) /
$ QEMAX ) )
ELSE
XX = HALF*( QQ( N+OFF )+QQ( N-1+OFF )+EE( N-1+OFF )+
$ QEMAX*SQRT( ( ( QQ( N+OFF )-QQ( N-1+OFF )+EE( N-
$ 1+OFF ) ) / QEMAX )**2+FOUR*QQ( N-1+OFF ) /
$ QEMAX ) )
END IF
YY = ( MAX( QQ( N+OFF ), QQ( N-1+OFF ) ) / XX )*
$ MIN( QQ( N+OFF ), QQ( N-1+OFF ) )
ELSE
XX = ZERO
YY = ZERO
END IF
ELSE
QEMAX = MAX( Q( N+OFF ), Q( N-1+OFF ), E( N-1+OFF ) )
IF( QEMAX.NE.ZERO ) THEN
IF( QEMAX.EQ.Q( N-1+OFF ) ) THEN
XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
$ QEMAX*SQRT( ( ( Q( N+OFF )-Q( N-1+OFF )+E( N-1+
$ OFF ) ) / QEMAX )**2+FOUR*E( N-1+OFF ) /
$ QEMAX ) )
ELSE IF( QEMAX.EQ.Q( N+OFF ) ) THEN
XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
$ QEMAX*SQRT( ( ( Q( N-1+OFF )-Q( N+OFF )+E( N-1+
$ OFF ) ) / QEMAX )**2+FOUR*E( N-1+OFF ) /
$ QEMAX ) )
ELSE
XX = HALF*( Q( N+OFF )+Q( N-1+OFF )+E( N-1+OFF )+
$ QEMAX*SQRT( ( ( Q( N+OFF )-Q( N-1+OFF )+E( N-1+
$ OFF ) ) / QEMAX )**2+FOUR*Q( N-1+OFF ) /
$ QEMAX ) )
END IF
YY = ( MAX( Q( N+OFF ), Q( N-1+OFF ) ) / XX )*
$ MIN( Q( N+OFF ), Q( N-1+OFF ) )
ELSE
XX = ZERO
YY = ZERO
END IF
END IF
Q( N-1+OFF ) = SIGMA + XX
Q( N+OFF ) = YY + SIGMA
N = 0
GO TO 20
END IF
CALL DLASQ3( N, Q( OFF1 ), E( OFF1 ), QQ( OFF1 ), EE( OFF1 ), SUP,
$ SIGMA, KEND, OFF, IPHASE, ICONV, EPS, TOL2, SMALL2 )
IF( SUP.LT.ZERO ) THEN
INFO = N + OFF
RETURN
END IF
OFF1 = OFF + 1
GO TO 20
*
* End of DLASQ2
*
END
|