File: dlasq3.f

package info (click to toggle)
scalapack 1.6-13
  • links: PTS
  • area: main
  • in suites: potato
  • size: 30,476 kB
  • ctags: 25,789
  • sloc: fortran: 296,718; ansic: 51,265; makefile: 1,541; sh: 4
file content (821 lines) | stat: -rw-r--r-- 21,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
      SUBROUTINE DLASQ3( N, Q, E, QQ, EE, SUP, SIGMA, KEND, OFF, IPHASE,
     $                   ICONV, EPS, TOL2, SMALL2 )
*
*  -- LAPACK routine (version 2.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 15, 1996
*
*     .. Scalar Arguments ..
      INTEGER            ICONV, IPHASE, KEND, N, OFF
      DOUBLE PRECISION   EPS, SIGMA, SMALL2, SUP, TOL2
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   E( * ), EE( * ), Q( * ), QQ( * )
*     ..
*
*     Purpose
*     =======
*
*     DLASQ3 is the workhorse of the whole bidiagonal SVD algorithm.
*     This can be described as the differential qd with shifts.
*
*     Arguments
*     =========
*
*  N       (input/output) INTEGER
*          On entry, N specifies the number of rows and columns
*          in the matrix. N must be at least 3.
*          On exit N is non-negative and less than the input value.
*
*  Q       (input/output) DOUBLE PRECISION array, dimension (N)
*          Q array in ping (see IPHASE below)
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N)
*          E array in ping (see IPHASE below)
*
*  QQ      (input/output) DOUBLE PRECISION array, dimension (N)
*          Q array in pong (see IPHASE below)
*
*  EE      (input/output) DOUBLE PRECISION array, dimension (N)
*          E array in pong (see IPHASE below)
*
*  SUP     (input/output) DOUBLE PRECISION
*          Upper bound for the smallest eigenvalue
*
*  SIGMA   (input/output) DOUBLE PRECISION
*          Accumulated shift for the present submatrix
*
*  KEND    (input/output) INTEGER
*          Index where minimum D(i) occurs in recurrence for
*          splitting criterion
*
*  OFF     (input/output) INTEGER
*          Offset for arrays
*
*  IPHASE  (input/output) INTEGER
*          If IPHASE = 1 (ping) then data is in Q and E arrays
*          If IPHASE = 2 (pong) then data is in QQ and EE arrays
*
*  ICONV   (input/output) INTEGER
*          If ICONV = 0 a bottom part of a matrix (with a split)
*          If ICONV =-3 a top part of a matrix (with a split)
*
*  EPS     (input) DOUBLE PRECISION
*          Machine epsilon
*
*  TOL2    (input) DOUBLE PRECISION
*          Square of the relative tolerance TOL as defined in DLASQ1
*
*  SMALL2  (input) DOUBLE PRECISION
*          A threshold value as defined in DLASQ1
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      INTEGER            NPP
      PARAMETER          ( NPP = 32 )
      INTEGER            IPP
      PARAMETER          ( IPP = 5 )
      DOUBLE PRECISION   HALF, FOUR
      PARAMETER          ( HALF = 0.5D+0, FOUR = 4.0D+0 )
      INTEGER            IFLMAX
      PARAMETER          ( IFLMAX = 2 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LDEF, LSPLIT
      INTEGER            I, IC, ICNT, IFL, IP, ISP, K1END, K2END, KE,
     $                   KS, MAXIT, N1, N2
      DOUBLE PRECISION   D, DM, QEMAX, T1, TAU, TOLX, TOLY, TOLZ, XX, YY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLASQ4
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
      ICNT = 0
      TAU = ZERO
      DM = SUP
      TOLX = SIGMA*TOL2
      TOLZ = MAX( SMALL2, SIGMA )*TOL2
*
*     Set maximum number of iterations
*
      MAXIT = 100*N
*
*     Flipping
*
      IC = 2
      IF( N.GT.3 ) THEN
         IF( IPHASE.EQ.1 ) THEN
            DO 10 I = 1, N - 2
               IF( Q( I ).GT.Q( I+1 ) )
     $            IC = IC + 1
               IF( E( I ).GT.E( I+1 ) )
     $            IC = IC + 1
   10       CONTINUE
            IF( Q( N-1 ).GT.Q( N ) )
     $         IC = IC + 1
            IF( IC.LT.N ) THEN
               CALL DCOPY( N, Q, 1, QQ, -1 )
               CALL DCOPY( N-1, E, 1, EE, -1 )
               IF( KEND.NE.0 )
     $            KEND = N - KEND + 1
               IPHASE = 2
            END IF
         ELSE
            DO 20 I = 1, N - 2
               IF( QQ( I ).GT.QQ( I+1 ) )
     $            IC = IC + 1
               IF( EE( I ).GT.EE( I+1 ) )
     $            IC = IC + 1
   20       CONTINUE
            IF( QQ( N-1 ).GT.QQ( N ) )
     $         IC = IC + 1
            IF( IC.LT.N ) THEN
               CALL DCOPY( N, QQ, 1, Q, -1 )
               CALL DCOPY( N-1, EE, 1, E, -1 )
               IF( KEND.NE.0 )
     $            KEND = N - KEND + 1
               IPHASE = 1
            END IF
         END IF
      END IF
      IF( ICONV.EQ.-3 ) THEN
         ICONV = 0
         IF( IPHASE.EQ.1 ) THEN
            GO TO 180
         ELSE
            GO TO 80
         END IF
      END IF
      IF( IPHASE.EQ.2 )
     $   GO TO 130
*
*     The ping section of the code
*
   30 CONTINUE
      IFL = 0
*
*     Compute the shift
*
      IF( KEND.EQ.0 .OR. SUP.EQ.ZERO ) THEN
         TAU = ZERO
      ELSE IF( ICNT.GT.0 .AND. DM.LE.TOLZ ) THEN
         TAU = ZERO
      ELSE
         IP = MAX( IPP, N / NPP )
         N2 = 2*IP + 1
         IF( N2.GE.N ) THEN
            N1 = 1
            N2 = N
         ELSE IF( KEND+IP.GT.N ) THEN
            N1 = N - 2*IP
         ELSE IF( KEND-IP.LT.1 ) THEN
            N1 = 1
         ELSE
            N1 = KEND - IP
         END IF
         CALL DLASQ4( N2, Q( N1 ), E( N1 ), TAU, SUP )
      END IF
   40 CONTINUE
      ICNT = ICNT + 1
      IF( ICNT.GT.MAXIT ) THEN
         SUP = -ONE
         RETURN
      END IF
      IF( TAU.EQ.ZERO ) THEN
*
*     dqd algorithm
*
         D = Q( 1 )
         DM = D
         KE = 0
         DO 50 I = 1, N - 3
            QQ( I ) = D + E( I )
            D = ( D / QQ( I ) )*Q( I+1 )
            IF( DM.GT.D ) THEN
               DM = D
               KE = I
            END IF
   50    CONTINUE
         KE = KE + 1
*
*     Penultimate dqd step (in ping)
*
         K2END = KE
         QQ( N-2 ) = D + E( N-2 )
         D = ( D / QQ( N-2 ) )*Q( N-1 )
         IF( DM.GT.D ) THEN
            DM = D
            KE = N - 1
         END IF
*
*     Final dqd step (in ping)
*
         K1END = KE
         QQ( N-1 ) = D + E( N-1 )
         D = ( D / QQ( N-1 ) )*Q( N )
         IF( DM.GT.D ) THEN
            DM = D
            KE = N
         END IF
         QQ( N ) = D
      ELSE
*
*     The dqds algorithm (in ping)
*
         D = Q( 1 ) - TAU
         DM = D
         KE = 0
         IF( D.LT.ZERO )
     $      GO TO 120
         DO 60 I = 1, N - 3
            QQ( I ) = D + E( I )
            D = ( D / QQ( I ) )*Q( I+1 ) - TAU
            IF( DM.GT.D ) THEN
               DM = D
               KE = I
               IF( D.LT.ZERO )
     $            GO TO 120
            END IF
   60    CONTINUE
         KE = KE + 1
*
*     Penultimate dqds step (in ping)
*
         K2END = KE
         QQ( N-2 ) = D + E( N-2 )
         D = ( D / QQ( N-2 ) )*Q( N-1 ) - TAU
         IF( DM.GT.D ) THEN
            DM = D
            KE = N - 1
            IF( D.LT.ZERO )
     $         GO TO 120
         END IF
*
*     Final dqds step (in ping)
*
         K1END = KE
         QQ( N-1 ) = D + E( N-1 )
         D = ( D / QQ( N-1 ) )*Q( N ) - TAU
         IF( DM.GT.D ) THEN
            DM = D
            KE = N
         END IF
         QQ( N ) = D
      END IF
*
*        Convergence when QQ(N) is small (in ping)
*
      IF( ABS( QQ( N ) ).LE.SIGMA*TOL2 ) THEN
         QQ( N ) = ZERO
         DM = ZERO
         KE = N
      END IF
      IF( QQ( N ).LT.ZERO )
     $   GO TO 120
*
*     Non-negative qd array: Update the e's
*
      DO 70 I = 1, N - 1
         EE( I ) = ( E( I ) / QQ( I ) )*Q( I+1 )
   70 CONTINUE
*
*     Updating sigma and iphase in ping
*
      SIGMA = SIGMA + TAU
      IPHASE = 2
   80 CONTINUE
      TOLX = SIGMA*TOL2
      TOLY = SIGMA*EPS
      TOLZ = MAX( SIGMA, SMALL2 )*TOL2
*
*     Checking for deflation and convergence (in ping)
*
   90 CONTINUE
      IF( N.LE.2 )
     $   RETURN
*
*        Deflation: bottom 1x1 (in ping)
*
      LDEF = .FALSE.
      IF( EE( N-1 ).LE.TOLZ ) THEN
         LDEF = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         IF( EE( N-1 ).LE.EPS*( SIGMA+QQ( N ) ) ) THEN
            IF( EE( N-1 )*( QQ( N ) / ( QQ( N )+SIGMA ) ).LE.TOL2*
     $          ( QQ( N )+SIGMA ) ) THEN
               LDEF = .TRUE.
            END IF
         END IF
      ELSE
         IF( EE( N-1 ).LE.QQ( N )*TOL2 ) THEN
            LDEF = .TRUE.
         END IF
      END IF
      IF( LDEF ) THEN
         Q( N ) = QQ( N ) + SIGMA
         N = N - 1
         ICONV = ICONV + 1
         GO TO 90
      END IF
*
*        Deflation: bottom 2x2 (in ping)
*
      LDEF = .FALSE.
      IF( EE( N-2 ).LE.TOLZ ) THEN
         LDEF = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         T1 = SIGMA + EE( N-1 )*( SIGMA / ( SIGMA+QQ( N ) ) )
         IF( EE( N-2 )*( T1 / ( QQ( N-1 )+T1 ) ).LE.TOLY ) THEN
            IF( EE( N-2 )*( QQ( N-1 ) / ( QQ( N-1 )+T1 ) ).LE.TOLX )
     $           THEN
               LDEF = .TRUE.
            END IF
         END IF
      ELSE
         IF( EE( N-2 ).LE.( QQ( N ) / ( QQ( N )+EE( N-1 )+QQ( N-1 ) ) )*
     $       QQ( N-1 )*TOL2 ) THEN
            LDEF = .TRUE.
         END IF
      END IF
      IF( LDEF ) THEN
         QEMAX = MAX( QQ( N ), QQ( N-1 ), EE( N-1 ) )
         IF( QEMAX.NE.ZERO ) THEN
            IF( QEMAX.EQ.QQ( N-1 ) ) THEN
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
            ELSE IF( QEMAX.EQ.QQ( N ) ) THEN
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N-1 )-QQ( N )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*EE( N-1 ) / QEMAX ) )
            ELSE
               XX = HALF*( QQ( N )+QQ( N-1 )+EE( N-1 )+QEMAX*
     $              SQRT( ( ( QQ( N )-QQ( N-1 )+EE( N-1 ) ) /
     $              QEMAX )**2+FOUR*QQ( N-1 ) / QEMAX ) )
            END IF
            YY = ( MAX( QQ( N ), QQ( N-1 ) ) / XX )*
     $           MIN( QQ( N ), QQ( N-1 ) )
         ELSE
            XX = ZERO
            YY = ZERO
         END IF
         Q( N-1 ) = SIGMA + XX
         Q( N ) = YY + SIGMA
         N = N - 2
         ICONV = ICONV + 2
         GO TO 90
      END IF
*
*     Updating bounds before going to pong
*
      IF( ICONV.EQ.0 ) THEN
         KEND = KE
         SUP = MIN( DM, SUP-TAU )
      ELSE IF( ICONV.GT.0 ) THEN
         SUP = MIN( QQ( N ), QQ( N-1 ), QQ( N-2 ), QQ( 1 ), QQ( 2 ),
     $         QQ( 3 ) )
         IF( ICONV.EQ.1 ) THEN
            KEND = K1END
         ELSE IF( ICONV.EQ.2 ) THEN
            KEND = K2END
         ELSE
            KEND = N
         END IF
         ICNT = 0
         MAXIT = 100*N
      END IF
*
*     Checking for splitting in ping
*
      LSPLIT = .FALSE.
      DO 100 KS = N - 3, 3, -1
         IF( EE( KS ).LE.TOLY ) THEN
            IF( EE( KS )*( MIN( QQ( KS+1 ),
     $          QQ( KS ) ) / ( MIN( QQ( KS+1 ), QQ( KS ) )+SIGMA ) ).LE.
     $          TOLX ) THEN
               LSPLIT = .TRUE.
               GO TO 110
            END IF
         END IF
  100 CONTINUE
*
      KS = 2
      IF( EE( 2 ).LE.TOLZ ) THEN
         LSPLIT = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         T1 = SIGMA + EE( 1 )*( SIGMA / ( SIGMA+QQ( 1 ) ) )
         IF( EE( 2 )*( T1 / ( QQ( 1 )+T1 ) ).LE.TOLY ) THEN
            IF( EE( 2 )*( QQ( 1 ) / ( QQ( 1 )+T1 ) ).LE.TOLX ) THEN
               LSPLIT = .TRUE.
            END IF
         END IF
      ELSE
         IF( EE( 2 ).LE.( QQ( 1 ) / ( QQ( 1 )+EE( 1 )+QQ( 2 ) ) )*
     $       QQ( 2 )*TOL2 ) THEN
            LSPLIT = .TRUE.
         END IF
      END IF
      IF( LSPLIT )
     $   GO TO 110
*
      KS = 1
      IF( EE( 1 ).LE.TOLZ ) THEN
         LSPLIT = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         IF( EE( 1 ).LE.EPS*( SIGMA+QQ( 1 ) ) ) THEN
            IF( EE( 1 )*( QQ( 1 ) / ( QQ( 1 )+SIGMA ) ).LE.TOL2*
     $          ( QQ( 1 )+SIGMA ) ) THEN
               LSPLIT = .TRUE.
            END IF
         END IF
      ELSE
         IF( EE( 1 ).LE.QQ( 1 )*TOL2 ) THEN
            LSPLIT = .TRUE.
         END IF
      END IF
*
  110 CONTINUE
      IF( LSPLIT ) THEN
         SUP = MIN( QQ( N ), QQ( N-1 ), QQ( N-2 ) )
         ISP = -( OFF+1 )
         OFF = OFF + KS
         N = N - KS
         KEND = MAX( 1, KEND-KS )
         E( KS ) = SIGMA
         EE( KS ) = ISP
         ICONV = 0
         RETURN
      END IF
*
*     Coincidence
*
      IF( TAU.EQ.ZERO .AND. DM.LE.TOLZ .AND. KEND.NE.N .AND. ICONV.EQ.
     $    0 .AND. ICNT.GT.0 ) THEN
         CALL DCOPY( N-KE, E( KE ), 1, QQ( KE ), 1 )
         QQ( N ) = ZERO
         CALL DCOPY( N-KE, Q( KE+1 ), 1, EE( KE ), 1 )
         SUP = ZERO
      END IF
      ICONV = 0
      GO TO 130
*
*     A new shift when the previous failed (in ping)
*
  120 CONTINUE
      IFL = IFL + 1
      SUP = TAU
*
*     SUP is small or
*     Too many bad shifts (ping)
*
      IF( SUP.LE.TOLZ .OR. IFL.GE.IFLMAX ) THEN
         TAU = ZERO
         GO TO 40
*
*     The asymptotic shift (in ping)
*
      ELSE
         TAU = MAX( TAU+D, ZERO )
         IF( TAU.LE.TOLZ )
     $      TAU = ZERO
         GO TO 40
      END IF
*
*     the pong section of the code
*
  130 CONTINUE
      IFL = 0
*
*     Compute the shift (in pong)
*
      IF( KEND.EQ.0 .AND. SUP.EQ.ZERO ) THEN
         TAU = ZERO
      ELSE IF( ICNT.GT.0 .AND. DM.LE.TOLZ ) THEN
         TAU = ZERO
      ELSE
         IP = MAX( IPP, N / NPP )
         N2 = 2*IP + 1
         IF( N2.GE.N ) THEN
            N1 = 1
            N2 = N
         ELSE IF( KEND+IP.GT.N ) THEN
            N1 = N - 2*IP
         ELSE IF( KEND-IP.LT.1 ) THEN
            N1 = 1
         ELSE
            N1 = KEND - IP
         END IF
         CALL DLASQ4( N2, QQ( N1 ), EE( N1 ), TAU, SUP )
      END IF
  140 CONTINUE
      ICNT = ICNT + 1
      IF( ICNT.GT.MAXIT ) THEN
         SUP = -ONE
         RETURN
      END IF
      IF( TAU.EQ.ZERO ) THEN
*
*     The dqd algorithm (in pong)
*
         D = QQ( 1 )
         DM = D
         KE = 0
         DO 150 I = 1, N - 3
            Q( I ) = D + EE( I )
            D = ( D / Q( I ) )*QQ( I+1 )
            IF( DM.GT.D ) THEN
               DM = D
               KE = I
            END IF
  150    CONTINUE
         KE = KE + 1
*
*     Penultimate dqd step (in pong)
*
         K2END = KE
         Q( N-2 ) = D + EE( N-2 )
         D = ( D / Q( N-2 ) )*QQ( N-1 )
         IF( DM.GT.D ) THEN
            DM = D
            KE = N - 1
         END IF
*
*     Final dqd step (in pong)
*
         K1END = KE
         Q( N-1 ) = D + EE( N-1 )
         D = ( D / Q( N-1 ) )*QQ( N )
         IF( DM.GT.D ) THEN
            DM = D
            KE = N
         END IF
         Q( N ) = D
      ELSE
*
*     The dqds algorithm (in pong)
*
         D = QQ( 1 ) - TAU
         DM = D
         KE = 0
         IF( D.LT.ZERO )
     $      GO TO 220
         DO 160 I = 1, N - 3
            Q( I ) = D + EE( I )
            D = ( D / Q( I ) )*QQ( I+1 ) - TAU
            IF( DM.GT.D ) THEN
               DM = D
               KE = I
               IF( D.LT.ZERO )
     $            GO TO 220
            END IF
  160    CONTINUE
         KE = KE + 1
*
*     Penultimate dqds step (in pong)
*
         K2END = KE
         Q( N-2 ) = D + EE( N-2 )
         D = ( D / Q( N-2 ) )*QQ( N-1 ) - TAU
         IF( DM.GT.D ) THEN
            DM = D
            KE = N - 1
            IF( D.LT.ZERO )
     $         GO TO 220
         END IF
*
*     Final dqds step (in pong)
*
         K1END = KE
         Q( N-1 ) = D + EE( N-1 )
         D = ( D / Q( N-1 ) )*QQ( N ) - TAU
         IF( DM.GT.D ) THEN
            DM = D
            KE = N
         END IF
         Q( N ) = D
      END IF
*
*        Convergence when is small (in pong)
*
      IF( ABS( Q( N ) ).LE.SIGMA*TOL2 ) THEN
         Q( N ) = ZERO
         DM = ZERO
         KE = N
      END IF
      IF( Q( N ).LT.ZERO )
     $   GO TO 220
*
*     Non-negative qd array: Update the e's
*
      DO 170 I = 1, N - 1
         E( I ) = ( EE( I ) / Q( I ) )*QQ( I+1 )
  170 CONTINUE
*
*     Updating sigma and iphase in pong
*
      SIGMA = SIGMA + TAU
  180 CONTINUE
      IPHASE = 1
      TOLX = SIGMA*TOL2
      TOLY = SIGMA*EPS
*
*     Checking for deflation and convergence (in pong)
*
  190 CONTINUE
      IF( N.LE.2 )
     $   RETURN
*
*        Deflation: bottom 1x1 (in pong)
*
      LDEF = .FALSE.
      IF( E( N-1 ).LE.TOLZ ) THEN
         LDEF = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         IF( E( N-1 ).LE.EPS*( SIGMA+Q( N ) ) ) THEN
            IF( E( N-1 )*( Q( N ) / ( Q( N )+SIGMA ) ).LE.TOL2*
     $          ( Q( N )+SIGMA ) ) THEN
               LDEF = .TRUE.
            END IF
         END IF
      ELSE
         IF( E( N-1 ).LE.Q( N )*TOL2 ) THEN
            LDEF = .TRUE.
         END IF
      END IF
      IF( LDEF ) THEN
         Q( N ) = Q( N ) + SIGMA
         N = N - 1
         ICONV = ICONV + 1
         GO TO 190
      END IF
*
*        Deflation: bottom 2x2 (in pong)
*
      LDEF = .FALSE.
      IF( E( N-2 ).LE.TOLZ ) THEN
         LDEF = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         T1 = SIGMA + E( N-1 )*( SIGMA / ( SIGMA+Q( N ) ) )
         IF( E( N-2 )*( T1 / ( Q( N-1 )+T1 ) ).LE.TOLY ) THEN
            IF( E( N-2 )*( Q( N-1 ) / ( Q( N-1 )+T1 ) ).LE.TOLX ) THEN
               LDEF = .TRUE.
            END IF
         END IF
      ELSE
         IF( E( N-2 ).LE.( Q( N ) / ( Q( N )+EE( N-1 )+Q( N-1 ) )*Q( N-
     $       1 ) )*TOL2 ) THEN
            LDEF = .TRUE.
         END IF
      END IF
      IF( LDEF ) THEN
         QEMAX = MAX( Q( N ), Q( N-1 ), E( N-1 ) )
         IF( QEMAX.NE.ZERO ) THEN
            IF( QEMAX.EQ.Q( N-1 ) ) THEN
               XX = HALF*( Q( N )+Q( N-1 )+E( N-1 )+QEMAX*
     $              SQRT( ( ( Q( N )-Q( N-1 )+E( N-1 ) ) / QEMAX )**2+
     $              FOUR*E( N-1 ) / QEMAX ) )
            ELSE IF( QEMAX.EQ.Q( N ) ) THEN
               XX = HALF*( Q( N )+Q( N-1 )+E( N-1 )+QEMAX*
     $              SQRT( ( ( Q( N-1 )-Q( N )+E( N-1 ) ) / QEMAX )**2+
     $              FOUR*E( N-1 ) / QEMAX ) )
            ELSE
               XX = HALF*( Q( N )+Q( N-1 )+E( N-1 )+QEMAX*
     $              SQRT( ( ( Q( N )-Q( N-1 )+E( N-1 ) ) / QEMAX )**2+
     $              FOUR*Q( N-1 ) / QEMAX ) )
            END IF
            YY = ( MAX( Q( N ), Q( N-1 ) ) / XX )*
     $           MIN( Q( N ), Q( N-1 ) )
         ELSE
            XX = ZERO
            YY = ZERO
         END IF
         Q( N-1 ) = SIGMA + XX
         Q( N ) = YY + SIGMA
         N = N - 2
         ICONV = ICONV + 2
         GO TO 190
      END IF
*
*     Updating bounds before going to pong
*
      IF( ICONV.EQ.0 ) THEN
         KEND = KE
         SUP = MIN( DM, SUP-TAU )
      ELSE IF( ICONV.GT.0 ) THEN
         SUP = MIN( Q( N ), Q( N-1 ), Q( N-2 ), Q( 1 ), Q( 2 ), Q( 3 ) )
         IF( ICONV.EQ.1 ) THEN
            KEND = K1END
         ELSE IF( ICONV.EQ.2 ) THEN
            KEND = K2END
         ELSE
            KEND = N
         END IF
         ICNT = 0
         MAXIT = 100*N
      END IF
*
*     Checking for splitting in pong
*
      LSPLIT = .FALSE.
      DO 200 KS = N - 3, 3, -1
         IF( E( KS ).LE.TOLY ) THEN
            IF( E( KS )*( MIN( Q( KS+1 ), Q( KS ) ) / ( MIN( Q( KS+1 ),
     $          Q( KS ) )+SIGMA ) ).LE.TOLX ) THEN
               LSPLIT = .TRUE.
               GO TO 210
            END IF
         END IF
  200 CONTINUE
*
      KS = 2
      IF( E( 2 ).LE.TOLZ ) THEN
         LSPLIT = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         T1 = SIGMA + E( 1 )*( SIGMA / ( SIGMA+Q( 1 ) ) )
         IF( E( 2 )*( T1 / ( Q( 1 )+T1 ) ).LE.TOLY ) THEN
            IF( E( 2 )*( Q( 1 ) / ( Q( 1 )+T1 ) ).LE.TOLX ) THEN
               LSPLIT = .TRUE.
            END IF
         END IF
      ELSE
         IF( E( 2 ).LE.( Q( 1 ) / ( Q( 1 )+E( 1 )+Q( 2 ) ) )*Q( 2 )*
     $       TOL2 ) THEN
            LSPLIT = .TRUE.
         END IF
      END IF
      IF( LSPLIT )
     $   GO TO 210
*
      KS = 1
      IF( E( 1 ).LE.TOLZ ) THEN
         LSPLIT = .TRUE.
      ELSE IF( SIGMA.GT.ZERO ) THEN
         IF( E( 1 ).LE.EPS*( SIGMA+Q( 1 ) ) ) THEN
            IF( E( 1 )*( Q( 1 ) / ( Q( 1 )+SIGMA ) ).LE.TOL2*
     $          ( Q( 1 )+SIGMA ) ) THEN
               LSPLIT = .TRUE.
            END IF
         END IF
      ELSE
         IF( E( 1 ).LE.Q( 1 )*TOL2 ) THEN
            LSPLIT = .TRUE.
         END IF
      END IF
*
  210 CONTINUE
      IF( LSPLIT ) THEN
         SUP = MIN( Q( N ), Q( N-1 ), Q( N-2 ) )
         ISP = OFF + 1
         OFF = OFF + KS
         KEND = MAX( 1, KEND-KS )
         N = N - KS
         E( KS ) = SIGMA
         EE( KS ) = ISP
         ICONV = 0
         RETURN
      END IF
*
*     Coincidence
*
      IF( TAU.EQ.ZERO .AND. DM.LE.TOLZ .AND. KEND.NE.N .AND. ICONV.EQ.
     $    0 .AND. ICNT.GT.0 ) THEN
         CALL DCOPY( N-KE, EE( KE ), 1, Q( KE ), 1 )
         Q( N ) = ZERO
         CALL DCOPY( N-KE, QQ( KE+1 ), 1, E( KE ), 1 )
         SUP = ZERO
      END IF
      ICONV = 0
      GO TO 30
*
*     Computation of a new shift when the previous failed (in pong)
*
  220 CONTINUE
      IFL = IFL + 1
      SUP = TAU
*
*     SUP is small or
*     Too many bad shifts (in pong)
*
      IF( SUP.LE.TOLZ .OR. IFL.GE.IFLMAX ) THEN
         TAU = ZERO
         GO TO 140
*
*     The asymptotic shift (in pong)
*
      ELSE
         TAU = MAX( TAU+D, ZERO )
         IF( TAU.LE.TOLZ )
     $      TAU = ZERO
         GO TO 140
      END IF
*
*     End of DLASQ3
*
      END