File: pcblas3tim.f

package info (click to toggle)
scalapack 1.7-5
  • links: PTS
  • area: main
  • in suites: woody
  • size: 33,956 kB
  • ctags: 30,434
  • sloc: fortran: 309,685; ansic: 64,027; makefile: 1,836; sh: 4
file content (1730 lines) | stat: -rw-r--r-- 63,721 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
      PROGRAM PCBLA3TIM
*
*  -- PBLAS timing driver (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  Purpose
*  =======
*
*  PCBLA3TIM  is the main timing program for the Level 3 PBLAS routines.
*
*  The program must be driven by a short data file.  An  annotated exam-
*  ple of a data file can be obtained by deleting the first 3 characters
*  from the following 59 lines:
*  'Level 3 PBLAS, Timing input file'
*  'Intel iPSC/860 hypercube, gamma model.'
*  'PCBLAS3TIM.SUMM'     output file name (if any)
*  6     device out
*  10              value of the logical computational blocksize NB
*  1               number of process grids (ordered pairs of P & Q)
*  2 2 1 4 2 3 8   values of P
*  2 2 4 1 3 2 1   values of Q
*  (1.0E0, 0.0E0)  value of ALPHA
*  (1.0E0, 0.0E0)  value of BETA
*  2               number of tests problems
*  'N' 'U'         values of DIAG
*  'L' 'R'         values of SIDE
*  'N' 'T'         values of TRANSA
*  'N' 'T'         values of TRANSB
*  'U' 'L'         values of UPLO
*  3  4            values of M
*  3  4            values of N
*  3  4            values of K
*  6 10            values of M_A
*  6 10            values of N_A
*  2  5            values of IMB_A
*  2  5            values of INB_A
*  2  5            values of MB_A
*  2  5            values of NB_A
*  0  1            values of RSRC_A
*  0  0            values of CSRC_A
*  1  1            values of IA
*  1  1            values of JA
*  6 10            values of M_B
*  6 10            values of N_B
*  2  5            values of IMB_B
*  2  5            values of INB_B
*  2  5            values of MB_B
*  2  5            values of NB_B
*  0  1            values of RSRC_B
*  0  0            values of CSRC_B
*  1  1            values of IB
*  1  1            values of JB
*  6 10            values of M_C
*  6 10            values of N_C
*  2  5            values of IMB_C
*  2  5            values of INB_C
*  2  5            values of MB_C
*  2  5            values of NB_C
*  0  1            values of RSRC_C
*  0  0            values of CSRC_C
*  1  1            values of IC
*  1  1            values of JC
*  PCGEMM  T  put F for no test in the same column
*  PCSYMM  T  put F for no test in the same column
*  PCHEMM  T  put F for no test in the same column
*  PCSYRK  T  put F for no test in the same column
*  PCHERK  T  put F for no test in the same column
*  PCSYR2K T  put F for no test in the same column
*  PCHER2K T  put F for no test in the same column
*  PCTRMM  T  put F for no test in the same column
*  PCTRSM  T  put F for no test in the same column
*  PCGEADD T  put F for no test in the same column
*  PCTRADD T  put F for no test in the same column
*
*  Internal Parameters
*  ===================
*
*  TOTMEM  INTEGER
*          TOTMEM  is  a machine-specific parameter indicating the maxi-
*          mum  amount  of  available  memory per  process in bytes. The
*          user  should  customize TOTMEM to his  platform.  Remember to
*          leave  room  in  memory  for the  operating system, the BLACS
*          buffer, etc.  For  example,  on  a system with 8 MB of memory
*          per process (e.g., one processor  on an Intel iPSC/860),  the
*          parameters we use are TOTMEM=6200000  (leaving 1.8 MB for OS,
*          code, BLACS buffer, etc).  However,  for PVM,  we usually set
*          TOTMEM = 2000000.  Some experimenting  with the maximum value
*          of TOTMEM may be required. By default, TOTMEM is 2000000.
*
*  REALSZ  INTEGER
*  CPLXSZ  INTEGER
*          REALSZ  and  CPLXSZ indicate the length in bytes on the given
*          platform  for a  single precision real and a single precision
*          complex. By default,  REALSZ is set to four and CPLXSZ is set
*          to eight.
*
*  MEM     COMPLEX array
*          MEM is an array of dimension TOTMEM / CPLXSZ.
*          All arrays used by SCALAPACK routines are allocated from this
*          array MEM and referenced by pointers. The  integer  IPA,  for
*          example, is a pointer to the starting element of MEM for  the
*          matrix A.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXTESTS, MAXGRIDS, CPLXSZ, TOTMEM, MEMSIZ,
     $                   NSUBS
      COMPLEX            ONE
      PARAMETER          ( MAXTESTS = 20, MAXGRIDS = 20, CPLXSZ = 8,
     $                   ONE = ( 1.0E+0, 0.0E+0 ), TOTMEM = 2000000,
     $                   NSUBS = 11, MEMSIZ = TOTMEM / CPLXSZ )
      INTEGER            BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
     $                   DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
     $                   RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
     $                   DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
     $                   IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
     $                   RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
*     ..
*     .. Local Scalars ..
      CHARACTER*1        ADIAGDO, AFORM, CFORM, DIAG, SIDE, TRANSA,
     $                   TRANSB, UPLO
      INTEGER            CSRCA, CSRCB, CSRCC, I, IA, IAM, IASEED, IB,
     $                   IBSEED, IC, ICSEED, ICTXT, IMBA, IMBB, IMBC,
     $                   IMIDA, IMIDB, IMIDC, INBA, INBB, INBC, IPA,
     $                   IPB, IPC, IPOSTA, IPOSTB, IPOSTC, IPREA, IPREB,
     $                   IPREC, J, JA, JB, JC, K, L, M, MA, MB, MBA,
     $                   MBB, MBC, MC, MEMREQD, MPA, MPB, MPC, MYCOL,
     $                   MYROW, N, NA, NB, NBA, NBB, NBC, NC, NCOLA,
     $                   NCOLB, NCOLC, NGRIDS, NOUT, NPCOL, NPROCS,
     $                   NPROW, NQA, NQB, NQC, NROWA, NROWB, NROWC,
     $                   NTESTS, OFFDA, OFFDC, RSRCA, RSRCB, RSRCC
      DOUBLE PRECISION   CFLOPS, NOPS, WFLOPS
      COMPLEX            ALPHA, BETA, SCALE
*     ..
*     .. Local Arrays ..
      LOGICAL            LTEST( NSUBS ), BCHECK( NSUBS ),
     $                   CCHECK( NSUBS )
      CHARACTER*1        DIAGVAL( MAXTESTS ), SIDEVAL( MAXTESTS ),
     $                   TRNAVAL( MAXTESTS ), TRNBVAL( MAXTESTS ),
     $                   UPLOVAL( MAXTESTS )
      CHARACTER*80       OUTFILE
      INTEGER            CSCAVAL( MAXTESTS ), CSCBVAL( MAXTESTS ),
     $                   CSCCVAL( MAXTESTS ), DESCA( DLEN_ ),
     $                   DESCB( DLEN_ ), DESCC( DLEN_ ),
     $                   IAVAL( MAXTESTS ), IBVAL( MAXTESTS ),
     $                   ICVAL( MAXTESTS ), IERR( 3 ),
     $                   IMBAVAL( MAXTESTS ), IMBBVAL( MAXTESTS ),
     $                   IMBCVAL( MAXTESTS ), INBAVAL( MAXTESTS ),
     $                   INBBVAL( MAXTESTS ), INBCVAL( MAXTESTS ),
     $                   JAVAL( MAXTESTS ), JBVAL( MAXTESTS ),
     $                   JCVAL( MAXTESTS ), KVAL( MAXTESTS ),
     $                   MAVAL( MAXTESTS ), MBAVAL( MAXTESTS ),
     $                   MBBVAL( MAXTESTS ), MBCVAL( MAXTESTS ),
     $                   MBVAL( MAXTESTS ), MCVAL( MAXTESTS ),
     $                   MVAL( MAXTESTS ), NAVAL( MAXTESTS ),
     $                   NBAVAL( MAXTESTS ), NBBVAL( MAXTESTS ),
     $                   NBCVAL( MAXTESTS ), NBVAL( MAXTESTS ),
     $                   NCVAL( MAXTESTS ), NVAL( MAXTESTS ),
     $                   PVAL( MAXTESTS ), QVAL( MAXTESTS ),
     $                   RSCAVAL( MAXTESTS ), RSCBVAL( MAXTESTS ),
     $                   RSCCVAL( MAXTESTS )
      DOUBLE PRECISION   CTIME( 1 ), WTIME( 1 )
      COMPLEX            MEM( MEMSIZ )
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
     $                   BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
     $                   BLACS_PINFO, IGSUM2D, PB_BOOT, PB_COMBINE,
     $                   PB_TIMER, PCBLA3TIMINFO, PCGEADD, PCGEMM,
     $                   PCHEMM, PCHER2K, PCHERK, PCLAGEN, PCLASCAL,
     $                   PCSYMM, PCSYR2K, PCSYRK, PCTRADD, PCTRMM,
     $                   PCTRSM, PMDESCCHK, PMDIMCHK
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   PDOPBL3
      EXTERNAL           LSAME, PDOPBL3
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, DBLE, MAX, REAL
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      LOGICAL            ABRTFLG
      INTEGER            INFO, NBLOG
      COMMON             /SNAMEC/SNAMES
      COMMON             /INFOC/INFO, NBLOG
      COMMON             /PBERRORC/NOUT, ABRTFLG
*     ..
*     .. Data Statements ..
      DATA               SNAMES/'PCGEMM ', 'PCSYMM ', 'PCHEMM ',
     $                   'PCSYRK ', 'PCHERK ', 'PCSYR2K',
     $                   'PCHER2K', 'PCTRMM ', 'PCTRSM ',
     $                   'PCGEADD', 'PCTRADD'/
      DATA               BCHECK/.TRUE., .TRUE., .TRUE., .FALSE.,
     $                   .FALSE., .TRUE., .TRUE., .TRUE., .TRUE.,
     $                   .FALSE., .FALSE./
      DATA               CCHECK/.TRUE., .TRUE., .TRUE., .TRUE., .TRUE.,
     $                   .TRUE., .TRUE., .FALSE., .FALSE., .TRUE.,
     $                   .TRUE./
*     ..
*     .. Executable Statements ..
*
*     Initialization
*
*     Set flag so that the PBLAS error handler won't abort on errors, so
*     that the tester will detect unsupported operations.
*
      ABRTFLG = .FALSE.
*
*     Seeds for random matrix generations.
*
      IASEED = 100
      IBSEED = 200
      ICSEED = 300
*
*     Get starting information
*
      CALL BLACS_PINFO( IAM, NPROCS )
      CALL PCBLA3TIMINFO( OUTFILE, NOUT, NTESTS, DIAGVAL, SIDEVAL,
     $                    TRNAVAL, TRNBVAL, UPLOVAL, MVAL, NVAL,
     $                    KVAL, MAVAL, NAVAL, IMBAVAL, MBAVAL,
     $                    INBAVAL, NBAVAL, RSCAVAL, CSCAVAL, IAVAL,
     $                    JAVAL, MBVAL, NBVAL, IMBBVAL, MBBVAL,
     $                    INBBVAL, NBBVAL, RSCBVAL, CSCBVAL, IBVAL,
     $                    JBVAL, MCVAL, NCVAL, IMBCVAL, MBCVAL,
     $                    INBCVAL, NBCVAL, RSCCVAL, CSCCVAL, ICVAL,
     $                    JCVAL, MAXTESTS, NGRIDS, PVAL, MAXGRIDS,
     $                    QVAL, MAXGRIDS, NBLOG, LTEST, IAM, NPROCS,
     $                    ALPHA, BETA, MEM )
*
      IF( IAM.EQ.0 )
     $   WRITE( NOUT, FMT = 9984 )
*
*     Loop over different process grids
*
      DO 60 I = 1, NGRIDS
*
         NPROW = PVAL( I )
         NPCOL = QVAL( I )
*
*        Make sure grid information is correct
*
         IERR( 1 ) = 0
         IF( NPROW.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
            IERR( 1 ) = 1
         ELSE IF( NPCOL.LT.1 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
            IERR( 1 ) = 1
         ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
            IERR( 1 ) = 1
         END IF
*
         IF( IERR( 1 ).GT.0 ) THEN
            IF( IAM.EQ.0 )
     $         WRITE( NOUT, FMT = 9997 ) 'GRID'
            GO TO 60
         END IF
*
*        Define process grid
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
         CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*        Go to bottom of process grid loop if this case doesn't use my
*        process
*
         IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
     $      GO TO 60
*
*        Loop over number of tests
*
         DO 50 J = 1, NTESTS
*
*           Get the test parameters
*
            DIAG   = DIAGVAL( J )
            SIDE   = SIDEVAL( J )
            TRANSA = TRNAVAL( J )
            TRANSB = TRNBVAL( J )
            UPLO   = UPLOVAL( J )
*
            M      = MVAL( J )
            N      = NVAL( J )
            K      = KVAL( J )
*
            MA    = MAVAL( J )
            NA    = NAVAL( J )
            IMBA  = IMBAVAL( J )
            MBA   = MBAVAL( J )
            INBA  = INBAVAL( J )
            NBA   = NBAVAL( J )
            RSRCA = RSCAVAL( J )
            CSRCA = CSCAVAL( J )
            IA    = IAVAL( J )
            JA    = JAVAL( J )
*
            MB    = MBVAL( J )
            NB    = NBVAL( J )
            IMBB  = IMBBVAL( J )
            MBB   = MBBVAL( J )
            INBB  = INBBVAL( J )
            NBB   = NBBVAL( J )
            RSRCB = RSCBVAL( J )
            CSRCB = CSCBVAL( J )
            IB    = IBVAL( J )
            JB    = JBVAL( J )
*
            MC    = MCVAL( J )
            NC    = NCVAL( J )
            IMBC  = IMBCVAL( J )
            MBC   = MBCVAL( J )
            INBC  = INBCVAL( J )
            NBC   = NBCVAL( J )
            RSRCC = RSCCVAL( J )
            CSRCC = CSCCVAL( J )
            IC    = ICVAL( J )
            JC    = JCVAL( J )
*
            IF( IAM.EQ.0 ) THEN
*
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9996 ) J, NPROW, NPCOL
               WRITE( NOUT, FMT = * )
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9994 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9993 ) M, N, K, SIDE, UPLO, TRANSA,
     $                                   TRANSB, DIAG
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9992 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9991 ) IA, JA, MA, NA, IMBA, INBA,
     $                                   MBA, NBA, RSRCA, CSRCA
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9990 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9991 ) IB, JB, MB, NB, IMBB, INBB,
     $                                   MBB, NBB, RSRCB, CSRCB
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9989 )
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9991 ) IC, JC, MC, NC, IMBC, INBC,
     $                                   MBC, NBC, RSRCC, CSRCC
*
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = 9980 )
*
            END IF
*
*           Check the validity of the input test parameters
*
            IF( .NOT.LSAME( SIDE, 'L' ).AND.
     $          .NOT.LSAME( SIDE, 'R' ) ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'SIDE'
               GO TO 40
            END IF
*
            IF( .NOT.LSAME( UPLO, 'U' ).AND.
     $          .NOT.LSAME( UPLO, 'L' ) ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'UPLO'
               GO TO 40
            END IF
*
            IF( .NOT.LSAME( TRANSA, 'N' ).AND.
     $          .NOT.LSAME( TRANSA, 'T' ).AND.
     $          .NOT.LSAME( TRANSA, 'C' ) ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'TRANSA'
               GO TO 40
            END IF
*
            IF( .NOT.LSAME( TRANSB, 'N' ).AND.
     $          .NOT.LSAME( TRANSB, 'T' ).AND.
     $          .NOT.LSAME( TRANSB, 'C' ) ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'TRANSB'
               GO TO 40
            END IF
*
            IF( .NOT.LSAME( DIAG , 'U' ).AND.
     $          .NOT.LSAME( DIAG , 'N' ) )THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9997 ) 'DIAG'
               GO TO 40
            END IF
*
*           Check and initialize the matrix descriptors
*
            CALL PMDESCCHK( ICTXT, NOUT, 'A', DESCA,
     $                      BLOCK_CYCLIC_2D_INB, MA, NA, IMBA, INBA,
     $                      MBA, NBA, RSRCA, CSRCA, MPA, NQA, IPREA,
     $                      IMIDA, IPOSTA, 0, 0, IERR( 1 ) )
*
            CALL PMDESCCHK( ICTXT, NOUT, 'B', DESCB,
     $                      BLOCK_CYCLIC_2D_INB, MB, NB, IMBB, INBB,
     $                      MBB, NBB, RSRCB, CSRCB, MPB, NQB, IPREB,
     $                      IMIDB, IPOSTB, 0, 0, IERR( 2 ) )
*
            CALL PMDESCCHK( ICTXT, NOUT, 'C', DESCC,
     $                      BLOCK_CYCLIC_2D_INB, MC, NC, IMBC, INBC,
     $                      MBC, NBC, RSRCC, CSRCC, MPC, NQC, IPREC,
     $                      IMIDC, IPOSTC, 0, 0, IERR( 3 ) )
*
            IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 .OR.
     $          IERR( 3 ).GT.0 ) THEN
               GO TO 40
            END IF
*
*           Assign pointers into MEM for matrices corresponding to
*           the distributed matrices A, X and Y.
*
            IPA = IPREA + 1
            IPB = IPA + DESCA( LLD_ )*NQA
            IPC = IPB + DESCB( LLD_ )*NQB
*
*           Check if sufficient memory.
*
            MEMREQD = IPC + DESCC( LLD_ )*NQC - 1
            IERR( 1 ) = 0
            IF( MEMREQD.GT.MEMSIZ ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9987 ) MEMREQD*CPLXSZ
               IERR( 1 ) = 1
            END IF
*
*           Check all processes for an error
*
            CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
            IF( IERR( 1 ).GT.0 ) THEN
               IF( IAM.EQ.0 )
     $            WRITE( NOUT, FMT = 9988 )
               GO TO 40
            END IF
*
*           Loop over all PBLAS 3 routines
*
            DO 30 L = 1, NSUBS
*
*              Continue only if this subroutine has to be tested.
*
               IF( .NOT.LTEST( L ) )
     $            GO TO 30
*
*              Define the size of the operands
*
               IF( L.EQ.1 ) THEN
*
*                 PCGEMM
*
                  NROWC = M
                  NCOLC = N
                  IF( LSAME( TRANSA, 'N' ) ) THEN
                     NROWA = M
                     NCOLA = K
                  ELSE
                     NROWA = K
                     NCOLA = M
                  END IF
                  IF( LSAME( TRANSB, 'N' ) ) THEN
                     NROWB = K
                     NCOLB = N
                  ELSE
                     NROWB = N
                     NCOLB = K
                  END IF
               ELSE IF( L.EQ.2 .OR. L.EQ.3 ) THEN
*
*                 PCSYMM, PCHEMM
*
                  NROWC = M
                  NCOLC = N
                  NROWB = M
                  NCOLB = N
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NROWA = M
                     NCOLA = M
                  ELSE
                     NROWA = N
                     NCOLA = N
                  END IF
               ELSE IF( L.EQ.4 .OR. L.EQ.5 ) THEN
*
*                 PCSYRK, PCHERK
*
                  NROWC = N
                  NCOLC = N
                  IF( LSAME( TRANSA, 'N' ) ) THEN
                     NROWA = N
                     NCOLA = K
                  ELSE
                     NROWA = K
                     NCOLA = N
                  END IF
                  NROWB = 0
                  NCOLB = 0
               ELSE IF( L.EQ.6 .OR. L.EQ.7 ) THEN
*
*                 PCSYR2K, PCHER2K
*
                  NROWC = N
                  NCOLC = N
                  IF( LSAME( TRANSA, 'N' ) ) THEN
                     NROWA = N
                     NCOLA = K
                     NROWB = N
                     NCOLB = K
                  ELSE
                     NROWA = K
                     NCOLA = N
                     NROWB = K
                     NCOLB = N
                  END IF
               ELSE IF( L.EQ.8 .OR. L.EQ.9 ) THEN
*
*                 PCTRMM, PCTRSM
*
                  NROWB = M
                  NCOLB = N
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NROWA = M
                     NCOLA = M
                  ELSE
                     NROWA = N
                     NCOLA = N
                  END IF
                  NROWC = 0
                  NCOLC = 0
               ELSE IF( L.EQ.10 .OR. L.EQ.11 ) THEN
*
*                 PCGEADD, PCTRADD
*
                  IF( LSAME( TRANSA, 'N' ) ) THEN
                     NROWA = M
                     NCOLA = N
                  ELSE
                     NROWA = N
                     NCOLA = M
                  END IF
                  NROWC = M
                  NCOLC = N
                  NROWB = 0
                  NCOLB = 0
*
               END IF
*
*              Check the validity of the operand sizes
*
               CALL PMDIMCHK( ICTXT, NOUT, NROWA, NCOLA, 'A', IA, JA,
     $                        DESCA, IERR( 1 ) )
               CALL PMDIMCHK( ICTXT, NOUT, NROWB, NCOLB, 'B', IB, JB,
     $                        DESCB, IERR( 2 ) )
               CALL PMDIMCHK( ICTXT, NOUT, NROWC, NCOLC, 'C', IC, JC,
     $                        DESCC, IERR( 3 ) )
*
               IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 .OR.
     $             IERR( 3 ).NE.0 ) THEN
                  GO TO 30
               END IF
*
*              Check special values of TRANSA for symmetric and
*              hermitian rank-k and rank-2k updates.
*
               IF( L.EQ.4 .OR. L.EQ.6 ) THEN
                  IF( .NOT.LSAME( TRANSA, 'N' ).AND.
     $                .NOT.LSAME( TRANSA, 'T' ) ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9983 ) SNAMES( L ), 'TRANSA'
                     GO TO 30
                  END IF
               ELSE IF( L.EQ.5 .OR. L.EQ.7 ) THEN
                  IF( .NOT.LSAME( TRANSA, 'N' ).AND.
     $                .NOT.LSAME( TRANSA, 'C' ) ) THEN
                     IF( IAM.EQ.0 )
     $                  WRITE( NOUT, FMT = 9983 ) SNAMES( L ), 'TRANSA'
                     GO TO 30
                  END IF
               END IF
*
*              Generate distributed matrices A, B and C
*
               IF( L.EQ.2 ) THEN
*
*                 PCSYMM
*
                  AFORM   = 'S'
                  ADIAGDO = 'N'
                  OFFDA   = IA - JA
                  CFORM   = 'N'
                  OFFDC   = 0
*
               ELSE IF( L.EQ.3 ) THEN
*
*                 PCHEMM
*
                  AFORM   = 'H'
                  ADIAGDO = 'N'
                  OFFDA   = IA - JA
                  CFORM   = 'N'
                  OFFDC   = 0
*
               ELSE IF( L.EQ.4 .OR. L.EQ.6 ) THEN
*
*                 PCSYRK, PCSYR2K
*
                  AFORM   = 'N'
                  ADIAGDO = 'N'
                  OFFDA   = 0
                  CFORM   = 'S'
                  OFFDC   = IC - JC
*
               ELSE IF( L.EQ.5 .OR. L.EQ.7 ) THEN
*
*                 PCHERK, PCHER2K
*
                  AFORM = 'N'
                  ADIAGDO = 'N'
                  OFFDA = 0
                  CFORM = 'H'
                  OFFDC = IC - JC
*
               ELSE IF( ( L.EQ.9 ).AND.( LSAME( DIAG, 'N' ) ) ) THEN
*
*                 PCTRSM
*
                  AFORM   = 'N'
                  ADIAGDO = 'D'
                  OFFDA   = IA - JA
                  CFORM   = 'N'
                  OFFDC   = 0
*
               ELSE
*
*                 Default values
*
                  AFORM   = 'N'
                  ADIAGDO = 'N'
                  OFFDA   = 0
                  CFORM   = 'N'
                  OFFDC   = 0
*
               END IF
*
               CALL PCLAGEN( .FALSE., AFORM, ADIAGDO, OFFDA, MA, NA,
     $                       1, 1, DESCA, IASEED, MEM( IPA ),
     $                       DESCA( LLD_ ) )
               IF( ( L.EQ.9 ).AND.( .NOT.( LSAME( DIAG, 'N' ) ) ).AND.
     $             ( MAX( NROWA, NCOLA ).GT.1 ) ) THEN
                  SCALE = ONE / CMPLX( REAL( MAX( NROWA, NCOLA ) ) )
                  IF( LSAME( UPLO, 'L' ) ) THEN
                     CALL PCLASCAL( 'Lower', NROWA-1, NCOLA-1, SCALE,
     $                              MEM( IPA ), IA+1, JA, DESCA )
                  ELSE
                     CALL PCLASCAL( 'Upper', NROWA-1, NCOLA-1, SCALE,
     $                              MEM( IPA ), IA, JA+1, DESCA )
                  END IF
*
               END IF
*
               IF( BCHECK( L ) )
     $            CALL PCLAGEN( .FALSE., 'None', 'No diag', 0, MB, NB,
     $                          1, 1, DESCB, IBSEED, MEM( IPB ),
     $                          DESCB( LLD_ ) )
*
               IF( CCHECK( L ) )
     $            CALL PCLAGEN( .FALSE., CFORM, 'No diag', OFFDC, MC,
     $                          NC, 1, 1, DESCC, ICSEED, MEM( IPC ),
     $                          DESCC( LLD_ ) )
*
               INFO = 0
               CALL PB_BOOT()
               CALL BLACS_BARRIER( ICTXT, 'All' )
*
*              Call the Level 3 PBLAS routine
*
               IF( L.EQ.1 ) THEN
*
*                 Test PCGEMM
*
                  NOPS = PDOPBL3( SNAMES( L ), M, N, K )
*
                  CALL PB_TIMER( 1 )
                  CALL PCGEMM( TRANSA, TRANSB, M, N, K, ALPHA,
     $                         MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
     $                         IB, JB, DESCB, BETA, MEM( IPC ), IC, JC,
     $                         DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.2 ) THEN
*
*                 Test PCSYMM
*
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
                  ELSE
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
                  END IF
*
                  CALL PB_TIMER( 1 )
                  CALL PCSYMM( SIDE, UPLO, M, N, ALPHA, MEM( IPA ), IA,
     $                         JA, DESCA, MEM( IPB ), IB, JB, DESCB,
     $                         BETA, MEM( IPC ), IC, JC, DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.3 ) THEN
*
*                 Test PCHEMM
*
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
                  ELSE
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
                  END IF
*
                  CALL PB_TIMER( 1 )
                  CALL PCHEMM( SIDE, UPLO, M, N, ALPHA, MEM( IPA ), IA,
     $                         JA, DESCA, MEM( IPB ), IB, JB, DESCB,
     $                         BETA, MEM( IPC ), IC, JC, DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.4 ) THEN
*
*                 Test PCSYRK
*
                  NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
                  CALL PB_TIMER( 1 )
                  CALL PCSYRK( UPLO, TRANSA, N, K, ALPHA, MEM( IPA ),
     $                         IA, JA, DESCA, BETA, MEM( IPC ), IC, JC,
     $                         DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.5 ) THEN
*
*                 Test PCHERK
*
                  NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
                  CALL PB_TIMER( 1 )
                  CALL PCHERK( UPLO, TRANSA, N, K, REAL( ALPHA ),
     $                         MEM( IPA ), IA, JA, DESCA, REAL( BETA ),
     $                         MEM( IPC ), IC, JC, DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.6 ) THEN
*
*                 Test PCSYR2K
*
                  NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
                  CALL PB_TIMER( 1 )
                  CALL PCSYR2K( UPLO, TRANSA, N, K, ALPHA, MEM( IPA ),
     $                          IA, JA, DESCA, MEM( IPB ), IB, JB,
     $                          DESCB, BETA, MEM( IPC ), IC, JC,
     $                          DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.7 ) THEN
*
*                 Test PCHER2K
*
                  NOPS = PDOPBL3( SNAMES( L ), N, N, K )
*
                  CALL PB_TIMER( 1 )
                  CALL PCHER2K( UPLO, TRANSA, N, K, ALPHA, MEM( IPA ),
     $                          IA, JA, DESCA, MEM( IPB ), IB, JB,
     $                          DESCB, REAL( BETA ), MEM( IPC ), IC, JC,
     $                          DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.8 ) THEN
*
*                 Test PCTRMM
*
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
                  ELSE
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
                  END IF
*
                  CALL PB_TIMER( 1 )
                  CALL PCTRMM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
     $                         MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
     $                         IB, JB, DESCB )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.9 ) THEN
*
*                 Test PCTRSM
*
                  IF( LSAME( SIDE, 'L' ) ) THEN
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
                  ELSE
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
                  END IF
*
                  CALL PB_TIMER( 1 )
                  CALL PCTRSM( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA,
     $                         MEM( IPA ), IA, JA, DESCA, MEM( IPB ),
     $                         IB, JB, DESCB )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.10 ) THEN
*
*                 Test PCGEADD
*
                  NOPS = PDOPBL3( SNAMES( L ), M, N, M )
*
                  CALL PB_TIMER( 1 )
                  CALL PCGEADD( TRANSA, M, N, ALPHA, MEM( IPA ), IA, JA,
     $                          DESCA, BETA, MEM( IPC ), IC, JC, DESCC )
                  CALL PB_TIMER( 1 )
*
               ELSE IF( L.EQ.11 ) THEN
*
*                 Test PCTRADD
*
                  IF( LSAME( UPLO, 'U' ) ) THEN
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 0 )
                  ELSE
                     NOPS = PDOPBL3( SNAMES( L ), M, N, 1 )
                  END IF
*
                  CALL PB_TIMER( 1 )
                  CALL PCTRADD( UPLO, TRANSA, M, N, ALPHA, MEM( IPA ),
     $                          IA, JA, DESCA, BETA, MEM( IPC ), IC, JC,
     $                          DESCC )
                  CALL PB_TIMER( 1 )
*
               END IF
*
*              Check if the operation has been performed.
*
               IF( INFO.NE.0 ) THEN
                  IF( IAM.EQ.0 )
     $               WRITE( NOUT, FMT = 9982 ) INFO
                  GO TO 30
               END IF
*
               CALL PB_COMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
               CALL PB_COMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
*              Only node 0 prints timing test result
*
               IF( IAM.EQ.0 ) THEN
*
*                 Print WALL time if machine supports it
*
                  IF( WTIME( 1 ).GT.0.0D+0 ) THEN
                     WFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
                  ELSE
                     WFLOPS = 0.0D+0
                  END IF
*
*                 Print CPU time if machine supports it
*
                  IF( CTIME( 1 ).GT.0.0D+0 ) THEN
                     CFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
                  ELSE
                     CFLOPS = 0.0D+0
                  END IF
*
                  WRITE( NOUT, FMT = 9981 ) SNAMES( L ), WTIME( 1 ),
     $                                      WFLOPS, CTIME( 1 ), CFLOPS
*
               END IF
*
   30       CONTINUE
*
   40       IF( IAM.EQ.0 ) THEN
               WRITE( NOUT, FMT = 9995 )
               WRITE( NOUT, FMT = * )
               WRITE( NOUT, FMT = 9986 ) J
            END IF
*
   50   CONTINUE
*
        CALL BLACS_GRIDEXIT( ICTXT )
*
   60 CONTINUE
*
      IF( IAM.EQ.0 ) THEN
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9985 )
         WRITE( NOUT, FMT = * )
      END IF
*
      CALL BLACS_EXIT( 0 )
*
 9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
     $        ' should be at least 1' )
 9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
     $        '. It can be at most', I4 )
 9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
 9996 FORMAT( 2X, 'Test number ', I2 , ' started on a ', I4, ' x ',
     $        I4, ' process grid.' )
 9995 FORMAT( 2X, '   ------------------------------------------------',
     $        '-------------------' )
 9994 FORMAT( 2X, '        M      N      K    SIDE  UPLO  TRANSA  ',
     $        'TRANSB  DIAG' )
 9993 FORMAT( 5X,I6,1X,I6,1X,I6,6X,A1,5X,A1,7X,A1,7X,A1,5X,A1 )
 9992 FORMAT( 2X, '       IA     JA     MA     NA   IMBA   INBA',
     $        '    MBA    NBA RSRCA CSRCA' )
 9991 FORMAT( 5X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I6,
     $        1X,I5,1X,I5 )
 9990 FORMAT( 2X, '       IB     JB     MB     NB   IMBB   INBB',
     $        '    MBB    NBB RSRCB CSRCB' )
 9989 FORMAT( 2X, '       IC     JC     MC     NC   IMBC   INBC',
     $        '    MBC    NBC RSRCC CSRCC' )
 9988 FORMAT( 'Not enough memory for this test: going on to',
     $        ' next test case.' )
 9987 FORMAT( 'Not enough memory. Need: ', I12 )
 9986 FORMAT( 2X, 'Test number ', I2, ' completed.' )
 9985 FORMAT( 2X, 'End of Tests.' )
 9984 FORMAT( 2X, 'Tests started.' )
 9983 FORMAT( 5X, A, '     ***** ', A, ' has an incorrect value:     ',
     $            ' BYPASS  *****' )
 9982 FORMAT( 2X, '   ***** Operation not supported, error code: ',
     $        I5, ' *****' )
 9981 FORMAT( 2X, '|  ', A, 2X, F13.3, 2X, F13.3, 2X, F13.3, 2X, F13.3 )
 9980 FORMAT( 2X, '            WALL time (s)    WALL Mflops ',
     $        '  CPU time (s)     CPU Mflops' )
*
      STOP
*
*     End of PCBLA3TIM
*
      END
      SUBROUTINE PCBLA3TIMINFO( SUMMRY, NOUT, NMAT, DIAGVAL, SIDEVAL,
     $                          TRNAVAL, TRNBVAL, UPLOVAL, MVAL,
     $                          NVAL, KVAL, MAVAL, NAVAL, IMBAVAL,
     $                          MBAVAL, INBAVAL, NBAVAL, RSCAVAL,
     $                          CSCAVAL, IAVAL, JAVAL, MBVAL, NBVAL,
     $                          IMBBVAL, MBBVAL, INBBVAL, NBBVAL,
     $                          RSCBVAL, CSCBVAL, IBVAL, JBVAL,
     $                          MCVAL, NCVAL, IMBCVAL, MBCVAL,
     $                          INBCVAL, NBCVAL, RSCCVAL, CSCCVAL,
     $                          ICVAL, JCVAL, LDVAL, NGRIDS, PVAL,
     $                          LDPVAL, QVAL, LDQVAL, NBLOG, LTEST,
     $                          IAM, NPROCS, ALPHA, BETA, WORK )
*
*  -- PBLAS test routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*     .. Scalar Arguments ..
      INTEGER            IAM, LDPVAL, LDQVAL, LDVAL, NBLOG, NGRIDS,
     $                   NMAT, NOUT, NPROCS
      COMPLEX            ALPHA, BETA
*     ..
*     .. Array Arguments ..
      CHARACTER*( * )    SUMMRY
      CHARACTER*1        DIAGVAL( LDVAL ), SIDEVAL( LDVAL ),
     $                   TRNAVAL( LDVAL ), TRNBVAL( LDVAL ),
     $                   UPLOVAL( LDVAL )
      LOGICAL            LTEST( * )
      INTEGER            CSCAVAL( LDVAL ), CSCBVAL( LDVAL ),
     $                   CSCCVAL( LDVAL ), IAVAL( LDVAL ),
     $                   IBVAL( LDVAL ), ICVAL( LDVAL ),
     $                   IMBAVAL( LDVAL ), IMBBVAL( LDVAL ),
     $                   IMBCVAL( LDVAL ), INBAVAL( LDVAL ),
     $                   INBBVAL( LDVAL ), INBCVAL( LDVAL ),
     $                   JAVAL( LDVAL ), JBVAL( LDVAL ), JCVAL( LDVAL ),
     $                   KVAL( LDVAL ), MAVAL( LDVAL ), MBAVAL( LDVAL ),
     $                   MBBVAL( LDVAL ), MBCVAL( LDVAL ),
     $                   MBVAL( LDVAL ), MCVAL( LDVAL ), MVAL( LDVAL ),
     $                   NAVAL( LDVAL ), NBAVAL( LDVAL ),
     $                   NBBVAL( LDVAL ), NBCVAL( LDVAL ),
     $                   NBVAL( LDVAL ), NCVAL( LDVAL ), NVAL( LDVAL ),
     $                   PVAL( LDPVAL ), QVAL( LDQVAL ),
     $                   RSCAVAL( LDVAL ), RSCBVAL( LDVAL ),
     $                   RSCCVAL( LDVAL ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PCBLA3TIMINFO  get  the needed startup information for timing various
*  Level 3 PBLAS routines, and transmits it to all processes.
*
*  Notes
*  =====
*
*  For packing the information we assumed that the length in bytes of an
*  integer is equal to the length in bytes of a real single precision.
*
*  Arguments
*  =========
*
*  SUMMRY  (global output) CHARACTER*(*)
*          On  exit,  SUMMRY  is  the  name of output (summary) file (if
*          any). SUMMRY is only defined for process 0.
*
*  NOUT    (global output) INTEGER
*          On exit, NOUT  specifies the unit number for the output file.
*          When NOUT is 6, output to screen,  when  NOUT is 0, output to
*          stderr. NOUT is only defined for process 0.
*
*  NMAT    (global output) INTEGER
*          On exit,  NMAT  specifies the number of different test cases.
*
*  DIAGVAL (global output) CHARACTER array
*          On entry,  DIAGVAL  is  an array of dimension LDVAL. On exit,
*          this array contains the values of DIAG to run the code with.
*
*  SIDEVAL (global output) CHARACTER array
*          On entry,  SIDEVAL  is  an array of dimension LDVAL. On exit,
*          this array contains the values of SIDE to run the code with.
*
*  TRNAVAL (global output) CHARACTER array
*          On entry, TRNAVAL  is an array of dimension LDVAL.  On  exit,
*          this array contains  the  values  of  TRANSA  to run the code
*          with.
*
*  TRNBVAL (global output) CHARACTER array
*          On entry, TRNBVAL  is an array of dimension LDVAL.  On  exit,
*          this array contains  the  values  of  TRANSB  to run the code
*          with.
*
*  UPLOVAL (global output) CHARACTER array
*          On entry, UPLOVAL  is an array of dimension LDVAL.  On  exit,
*          this array contains the values of UPLO to run the code with.
*
*  MVAL    (global output) INTEGER array
*          On entry, MVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of M to run the code with.
*
*  NVAL    (global output) INTEGER array
*          On entry, NVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of N to run the code with.
*
*  KVAL    (global output) INTEGER array
*          On entry, KVAL is an array of dimension LDVAL.  On exit, this
*          array contains the values of K to run the code with.
*
*  MAVAL   (global output) INTEGER array
*          On entry, MAVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCA( M_ )  to run the code
*          with.
*
*  NAVAL   (global output) INTEGER array
*          On entry, NAVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCA( N_ )  to run the code
*          with.
*
*  IMBAVAL (global output) INTEGER array
*          On entry,  IMBAVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCA( IMB_ ) to run the
*          code with.
*
*  MBAVAL  (global output) INTEGER array
*          On entry,  MBAVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCA( MB_ ) to  run the
*          code with.
*
*  INBAVAL (global output) INTEGER array
*          On entry,  INBAVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCA( INB_ ) to run the
*          code with.
*
*  NBAVAL  (global output) INTEGER array
*          On entry,  NBAVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCA( NB_ ) to  run the
*          code with.
*
*  RSCAVAL (global output) INTEGER array
*          On entry, RSCAVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCA( RSRC_ ) to run the
*          code with.
*
*  CSCAVAL (global output) INTEGER array
*          On entry, CSCAVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCA( CSRC_ ) to run the
*          code with.
*
*  IAVAL   (global output) INTEGER array
*          On entry, IAVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IA to run the code with.
*
*  JAVAL   (global output) INTEGER array
*          On entry, JAVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JA to run the code with.
*
*  MBVAL   (global output) INTEGER array
*          On entry, MBVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCB( M_ )  to run the code
*          with.
*
*  NBVAL   (global output) INTEGER array
*          On entry, NBVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCB( N_ )  to run the code
*          with.
*
*  IMBBVAL (global output) INTEGER array
*          On entry,  IMBBVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCB( IMB_ ) to run the
*          code with.
*
*  MBBVAL  (global output) INTEGER array
*          On entry,  MBBVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCB( MB_ ) to  run the
*          code with.
*
*  INBBVAL (global output) INTEGER array
*          On entry,  INBBVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCB( INB_ ) to run the
*          code with.
*
*  NBBVAL  (global output) INTEGER array
*          On entry,  NBBVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCB( NB_ ) to  run the
*          code with.
*
*  RSCBVAL (global output) INTEGER array
*          On entry, RSCBVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCB( RSRC_ ) to run the
*          code with.
*
*  CSCBVAL (global output) INTEGER array
*          On entry, CSCBVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCB( CSRC_ ) to run the
*          code with.
*
*  IBVAL   (global output) INTEGER array
*          On entry, IBVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IB to run the code with.
*
*  JBVAL   (global output) INTEGER array
*          On entry, JBVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JB to run the code with.
*
*  MCVAL   (global output) INTEGER array
*          On entry, MCVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCC( M_ )  to run the code
*          with.
*
*  NCVAL   (global output) INTEGER array
*          On entry, NCVAL is an array of dimension LDVAL. On exit, this
*          array  contains  the values  of  DESCC( N_ )  to run the code
*          with.
*
*  IMBCVAL (global output) INTEGER array
*          On entry,  IMBCVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCC( IMB_ ) to run the
*          code with.
*
*  MBCVAL  (global output) INTEGER array
*          On entry,  MBCVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCC( MB_ ) to  run the
*          code with.
*
*  INBCVAL (global output) INTEGER array
*          On entry,  INBCVAL  is an array of  dimension LDVAL. On exit,
*          this  array  contains  the values of DESCC( INB_ ) to run the
*          code with.
*
*  NBCVAL  (global output) INTEGER array
*          On entry,  NBCVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains  the values of DESCC( NB_ ) to  run the
*          code with.
*
*  RSCCVAL (global output) INTEGER array
*          On entry, RSCCVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCC( RSRC_ ) to run the
*          code with.
*
*  CSCCVAL (global output) INTEGER array
*          On entry, CSCCVAL  is an array of  dimension  LDVAL. On exit,
*          this  array  contains the values of DESCC( CSRC_ ) to run the
*          code with.
*
*  ICVAL   (global output) INTEGER array
*          On entry, ICVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of IC to run the code with.
*
*  JCVAL   (global output) INTEGER array
*          On entry, JCVAL is an array of dimension LDVAL. On exit, this
*          array  contains the values of JC to run the code with.
*
*  LDVAL   (global input) INTEGER
*          On entry, LDVAL specifies the maximum number of different va-
*          lues  that  can be used for DIAG, SIDE, TRANSA, TRANSB, UPLO,
*          M,  N,  K,  DESCA(:), IA, JA, DESCB(:), IB, JB, DESCC(:), IC,
*          JC. This is also the maximum number of test cases.
*
*  NGRIDS  (global output) INTEGER
*          On exit, NGRIDS specifies the number of different values that
*          can be used for P and Q.
*
*  PVAL    (global output) INTEGER array
*          On entry, PVAL is an array of dimension LDPVAL. On exit, this
*          array contains the values of P to run the code with.
*
*  LDPVAL  (global input) INTEGER
*          On entry,  LDPVAL  specifies  the maximum number of different
*          values that can be used for P.
*
*  QVAL    (global output) INTEGER array
*          On entry, QVAL is an array of dimension LDQVAL. On exit, this
*          array contains the values of Q to run the code with.
*
*  LDQVAL  (global input) INTEGER
*          On entry,  LDQVAL  specifies  the maximum number of different
*          values that can be used for Q.
*
*  NBLOG   (global output) INTEGER
*          On exit, NBLOG specifies the logical computational block size
*          to run the tests with. NBLOG must be at least one.
*
*  LTEST   (global output) LOGICAL array
*          On entry, LTEST  is an array of dimension at least eleven. On
*          exit, if LTEST( i ) is .TRUE., the i-th Level 3 PBLAS routine
*          will be tested.  See  the  input file for the ordering of the
*          routines.
*
*  IAM     (local input) INTEGER
*          On entry,  IAM  specifies the number of the process executing
*          this routine.
*
*  NPROCS  (global input) INTEGER
*          On entry, NPROCS specifies the total number of processes.
*
*  ALPHA   (global output) COMPLEX
*          On exit, ALPHA specifies the value of alpha to be used in all
*          the test cases.
*
*  BETA    (global output) COMPLEX
*          On exit, BETA  specifies the value of beta  to be used in all
*          the test cases.
*
*  WORK    (local workspace) INTEGER array
*          On   entry,   WORK   is   an  array  of  dimension  at  least
*          MAX( 3, 2*NGRIDS+38*NMAT+NSUBS ) with NSUBS = 11. This  array
*          is  used  to  pack all output arrays in order to send info in
*          one message.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University  of  Tennessee, Knoxville 37996, USA.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            NIN, NSUBS
      PARAMETER          ( NIN = 11, NSUBS = 11 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LTESTT
      INTEGER            I, ICTXT, J
*     ..
*     .. Local Arrays ..
      CHARACTER*7        SNAMET
      CHARACTER*79       USRINFO
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
     $                   BLACS_GRIDINIT, BLACS_SETUP, CGEBR2D, CGEBS2D,
     $                   ICOPY, IGEBR2D, IGEBS2D, SGEBR2D, SGEBS2D
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CHAR, ICHAR, MAX, MIN
*     ..
*     .. Common Blocks ..
      CHARACTER*7        SNAMES( NSUBS )
      COMMON             /SNAMEC/SNAMES
*     ..
*     .. Executable Statements ..
*
*     Process 0 reads the input data, broadcasts to other processes and
*     writes needed information to NOUT
*
      IF( IAM.EQ.0 ) THEN
*
*        Open file and skip data file header
*
         OPEN( NIN, FILE='PCBLAS3TIM.dat', STATUS='OLD' )
         READ( NIN, FMT = * ) SUMMRY
         SUMMRY = ' '
*
*        Read in user-supplied info about machine type, compiler, etc.
*
         READ( NIN, FMT = 9999 ) USRINFO
*
*        Read name and unit number for summary output file
*
         READ( NIN, FMT = * ) SUMMRY
         READ( NIN, FMT = * ) NOUT
         IF( NOUT.NE.0 .AND. NOUT.NE.6 )
     $      OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
*        Read and check the parameter values for the tests.
*
*        Get logical computational block size
*
         READ( NIN, FMT = * ) NBLOG
         IF( NBLOG.LT.1 )
     $      NBLOG = 32
*
*        Get number of grids
*
         READ( NIN, FMT = * ) NGRIDS
         IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
            GO TO 120
         ELSE IF( NGRIDS.GT.LDQVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
            GO TO 120
         END IF
*
*        Get values of P and Q
*
         READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
         READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
*        Read ALPHA, BETA
*
         READ( NIN, FMT = * ) ALPHA
         READ( NIN, FMT = * ) BETA
*
*        Read number of tests.
*
         READ( NIN, FMT = * ) NMAT
         IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
            WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
            GO TO 120
         ENDIF
*
*        Read in input data into arrays.
*
         READ( NIN, FMT = * ) ( DIAGVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( SIDEVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( TRNAVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( TRNBVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( UPLOVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MVAL   ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NVAL   ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( KVAL   ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MAVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NAVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBAVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBAVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBAVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBAVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCAVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCAVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IAVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JAVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBBVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBBVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBBVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBBVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCBVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCBVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IBVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JBVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MCVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NCVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( IMBCVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( INBCVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( MBCVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( NBCVAL ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( RSCCVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( CSCCVAL( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( ICVAL  ( I ), I = 1, NMAT )
         READ( NIN, FMT = * ) ( JCVAL  ( I ), I = 1, NMAT )
*
*        Read names of subroutines and flags which indicate
*        whether they are to be tested.
*
         DO 10 I = 1, NSUBS
            LTEST( I ) = .FALSE.
   10    CONTINUE
   20    CONTINUE
         READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
         DO 30 I = 1, NSUBS
            IF( SNAMET.EQ.SNAMES( I ) )
     $         GO TO 40
   30    CONTINUE
*
         WRITE( NOUT, FMT = 9995 )SNAMET
         GO TO 120
*
   40    CONTINUE
         LTEST( I ) = LTESTT
         GO TO 20
*
   50    CONTINUE
*
*        Close input file
*
         CLOSE ( NIN )
*
*        For pvm only: if virtual machine not set up, allocate it and
*        spawn the correct number of processes.
*
         IF( NPROCS.LT.1 ) THEN
            NPROCS = 0
            DO 60 I = 1, NGRIDS
               NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
   60       CONTINUE
            CALL BLACS_SETUP( IAM, NPROCS )
         END IF
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
*        Pack information arrays and broadcast
*
         CALL CGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
         CALL CGEBS2D( ICTXT, 'All', ' ', 1, 1, BETA,  1 )
*
         WORK( 1 ) = NGRIDS
         WORK( 2 ) = NMAT
         WORK( 3 ) = NBLOG
         CALL IGEBS2D( ICTXT, 'All', ' ', 3, 1, WORK, 3 )
*
         I = 1
         DO 70 J = 1, NMAT
            WORK( I   ) = ICHAR( DIAGVAL( J ) )
            WORK( I+1 ) = ICHAR( SIDEVAL( J ) )
            WORK( I+2 ) = ICHAR( TRNAVAL( J ) )
            WORK( I+3 ) = ICHAR( TRNBVAL( J ) )
            WORK( I+4 ) = ICHAR( UPLOVAL( J ) )
            I = I + 5
   70    CONTINUE
         CALL ICOPY( NGRIDS, PVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, QVAL,     1, WORK( I ), 1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   MVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   KVAL,     1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MAVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NAVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBAVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBAVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBAVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBAVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCAVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCAVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IAVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JAVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBBVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBBVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBBVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBBVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCBVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCBVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IBVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JBVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MCVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NCVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   IMBCVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   INBCVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   MBCVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   NBCVAL,   1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   RSCCVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   CSCCVAL,  1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   ICVAL,    1, WORK( I ), 1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   JCVAL,    1, WORK( I ), 1 )
         I = I + NMAT
*
         DO 80 J = 1, NSUBS
            IF( LTEST( J ) ) THEN
               WORK( I ) = 1
            ELSE
               WORK( I ) = 0
            END IF
            I = I + 1
   80    CONTINUE
         I = I - 1
         CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
*        regurgitate input
*
         WRITE( NOUT, FMT = 9999 )
     $               'Level 3 PBLAS timing program.'
         WRITE( NOUT, FMT = 9999 ) USRINFO
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9999 )
     $               'Tests of the complex single precision '//
     $               'Level 3 PBLAS'
         WRITE( NOUT, FMT = * )
         WRITE( NOUT, FMT = 9992 ) NMAT
         WRITE( NOUT, FMT = 9986 ) NBLOG
         WRITE( NOUT, FMT = 9991 ) NGRIDS
         WRITE( NOUT, FMT = 9989 )
     $               'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9990 ) ( PVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9989 )
     $               'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
         IF( NGRIDS.GT.5 )
     $      WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 6,
     $                                  MIN( 10, NGRIDS ) )
         IF( NGRIDS.GT.10 )
     $      WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 11,
     $                                  MIN( 15, NGRIDS ) )
         IF( NGRIDS.GT.15 )
     $      WRITE( NOUT, FMT = 9990 ) ( QVAL(I), I = 16, NGRIDS )
         WRITE( NOUT, FMT = 9994 ) ALPHA
         WRITE( NOUT, FMT = 9993 ) BETA
         IF( LTEST( 1 ) ) THEN
            WRITE( NOUT, FMT = 9988 ) SNAMES( 1 ), ' ... Yes'
         ELSE
            WRITE( NOUT, FMT = 9988 ) SNAMES( 1 ), ' ... No '
         END IF
         DO 90 I = 2, NSUBS
            IF( LTEST( I ) ) THEN
               WRITE( NOUT, FMT = 9987 ) SNAMES( I ), ' ... Yes'
            ELSE
               WRITE( NOUT, FMT = 9987 ) SNAMES( I ), ' ... No '
            END IF
   90    CONTINUE
         WRITE( NOUT, FMT = * )
*
      ELSE
*
*        If in pvm, must participate setting up virtual machine
*
         IF( NPROCS.LT.1 )
     $      CALL BLACS_SETUP( IAM, NPROCS )
*
*        Temporarily define blacs grid to include all processes so
*        information can be broadcast to all processes
*
         CALL BLACS_GET( -1, 0, ICTXT )
         CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
         CALL CGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
         CALL CGEBR2D( ICTXT, 'All', ' ', 1, 1, BETA,  1, 0, 0 )
*
         CALL IGEBR2D( ICTXT, 'All', ' ', 3, 1, WORK, 3, 0, 0 )
         NGRIDS = WORK( 1 )
         NMAT   = WORK( 2 )
         NBLOG  = WORK( 3 )
*
         I = 2*NGRIDS + 38*NMAT + NSUBS
         CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
         I = 1
         DO 100 J = 1, NMAT
            DIAGVAL( J ) = CHAR( WORK( I   ) )
            SIDEVAL( J ) = CHAR( WORK( I+1 ) )
            TRNAVAL( J ) = CHAR( WORK( I+2 ) )
            TRNBVAL( J ) = CHAR( WORK( I+3 ) )
            UPLOVAL( J ) = CHAR( WORK( I+4 ) )
            I = I + 5
  100    CONTINUE
         CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL,     1 )
         I = I + NGRIDS
         CALL ICOPY( NMAT,   WORK( I ), 1, MVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, KVAL,     1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MAVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NAVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBAVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBAVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBAVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBAVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCAVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCAVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IAVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JAVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBBVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBBVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBBVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBBVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCBVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCBVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IBVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JBVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MCVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NCVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, IMBCVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, INBCVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, MBCVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, NBCVAL,   1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, RSCCVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, CSCCVAL,  1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, ICVAL,    1 )
         I = I + NMAT
         CALL ICOPY( NMAT,   WORK( I ), 1, JCVAL,    1 )
         I = I + NMAT
*
         DO 110 J = 1, NSUBS
            IF( WORK( I ).EQ.1 ) THEN
               LTEST( J ) = .TRUE.
            ELSE
               LTEST( J ) = .FALSE.
            END IF
            I = I + 1
  110    CONTINUE
*
      END IF
*
      CALL BLACS_GRIDEXIT( ICTXT )
*
      RETURN
*
  120 WRITE( NOUT, FMT = 9997 )
      CLOSE( NIN )
      IF( NOUT.NE.6 .AND. NOUT.NE.0 )
     $   CLOSE( NOUT )
      CALL BLACS_ABORT( ICTXT, 1 )
*
      STOP
*
 9999 FORMAT( A )
 9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
     $        'than ', I2 )
 9997 FORMAT( ' Illegal input in file ',40A,'.  Aborting run.' )
 9996 FORMAT( A7, L2 )
 9995 FORMAT( '  Subprogram name ', A7, ' not recognized',
     $        /' ******* TESTS ABANDONED *******' )
 9994 FORMAT( 2X, 'Alpha                     :      (', G16.6,
     $        ',', G16.6, ')' )
 9993 FORMAT( 2X, 'Beta                      :      (', G16.6,
     $        ',', G16.6, ')' )
 9992 FORMAT( 2X, 'Number of Tests           : ', I6 )
 9991 FORMAT( 2X, 'Number of process grids   : ', I6 )
 9990 FORMAT( 2X, '                          : ', 5I6 )
 9989 FORMAT( 2X, A1, '                         : ', 5I6 )
 9988 FORMAT( 2X, 'Routines to be tested     :      ', A, A8 )
 9987 FORMAT( 2X, '                                 ', A, A8 )
 9986 FORMAT( 2X, 'Logical block size        : ', I6 )
*
*     End of PCBLA3TIMINFO
*
      END