1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
|
PROGRAM PSBLA1TIM
*
* -- PBLAS timing driver (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* Purpose
* =======
*
* PSBLA1TIM is the main timing program for the Level 1 PBLAS routines.
*
* The program must be driven by a short data file. An annotated exam-
* ple of a data file can be obtained by deleting the first 3 characters
* from the following 40 lines:
* 'Level 1 PBLAS, Timing input file'
* 'Intel iPSC/860 hypercube, gamma model.'
* 'PSBLAS1TIM.SUMM' output file name (if any)
* 6 device out
* 1 number of process grids (ordered pairs of P & Q)
* 2 2 1 4 2 3 8 values of P
* 2 2 4 1 3 2 1 values of Q
* 1.0E0 value of ALPHA
* 2 number of tests problems
* 3 4 values of N
* 6 10 values of M_X
* 6 10 values of N_X
* 2 5 values of IMB_X
* 2 5 values of INB_X
* 2 5 values of MB_X
* 2 5 values of NB_X
* 0 1 values of RSRC_X
* 0 0 values of CSRC_X
* 1 1 values of IX
* 1 1 values of JX
* 1 1 values of INCX
* 6 10 values of M_Y
* 6 10 values of N_Y
* 2 5 values of IMB_Y
* 2 5 values of INB_Y
* 2 5 values of MB_Y
* 2 5 values of NB_Y
* 0 1 values of RSRC_Y
* 0 0 values of CSRC_Y
* 1 1 values of IY
* 1 1 values of JY
* 6 1 values of INCY
* PSSWAP T put F for no test in the same column
* PSSCAL T put F for no test in the same column
* PSCOPY T put F for no test in the same column
* PSAXPY T put F for no test in the same column
* PSDOT T put F for no test in the same column
* PSNRM2 T put F for no test in the same column
* PSASUM T put F for no test in the same column
* PSAMAX T put F for no test in the same column
*
* Internal Parameters
* ===================
*
* TOTMEM INTEGER
* TOTMEM is a machine-specific parameter indicating the maxi-
* mum amount of available memory per process in bytes. The
* user should customize TOTMEM to his platform. Remember to
* leave room in memory for the operating system, the BLACS
* buffer, etc. For example, on a system with 8 MB of memory
* per process (e.g., one processor on an Intel iPSC/860), the
* parameters we use are TOTMEM=6200000 (leaving 1.8 MB for OS,
* code, BLACS buffer, etc). However, for PVM, we usually set
* TOTMEM = 2000000. Some experimenting with the maximum value
* of TOTMEM may be required. By default, TOTMEM is 2000000.
*
* REALSZ INTEGER
* REALSZ indicates the length in bytes on the given platform
* for a single precision real. By default, REALSZ is set to
* four.
*
* MEM REAL array
* MEM is an array of dimension TOTMEM / REALSZ.
* All arrays used by SCALAPACK routines are allocated from this
* array MEM and referenced by pointers. The integer IPA, for
* example, is a pointer to the starting element of MEM for the
* matrix A.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
INTEGER MAXTESTS, MAXGRIDS, REALSZ, TOTMEM, MEMSIZ,
$ NSUBS
PARAMETER ( MAXTESTS = 20, MAXGRIDS = 20, REALSZ = 4,
$ TOTMEM = 2000000, NSUBS = 8,
$ MEMSIZ = TOTMEM / REALSZ )
INTEGER BLOCK_CYCLIC_2D_INB, CSRC_, CTXT_, DLEN_,
$ DTYPE_, IMB_, INB_, LLD_, MB_, M_, NB_, N_,
$ RSRC_
PARAMETER ( BLOCK_CYCLIC_2D_INB = 2, DLEN_ = 11,
$ DTYPE_ = 1, CTXT_ = 2, M_ = 3, N_ = 4,
$ IMB_ = 5, INB_ = 6, MB_ = 7, NB_ = 8,
$ RSRC_ = 9, CSRC_ = 10, LLD_ = 11 )
* ..
* .. Local Scalars ..
INTEGER CSRCX, CSRCY, I, IAM, ICTXT, IMBX, IMBY, IMIDX,
$ IMIDY, INBX, INBY, INCX, INCY, IPOSTX, IPOSTY,
$ IPREX, IPREY, IPX, IPY, IX, IXSEED, IY, IYSEED,
$ J, JX, JY, K, MBX, MBY, MEMREQD, MPX, MPY, MX,
$ MY, MYCOL, MYROW, N, NBX, NBY, NGRIDS, NOUT,
$ NPCOL, NPROCS, NPROW, NQX, NQY, NTESTS, NX, NY,
$ PISCLR, RSRCX, RSRCY
REAL ALPHA, PSCLR, PUSCLR
DOUBLE PRECISION ADDS, CFLOPS, MULTS, NOPS, WFLOPS
* ..
* .. Local Arrays ..
CHARACTER*80 OUTFILE
LOGICAL LTEST( NSUBS ), YCHECK( NSUBS )
INTEGER CSCXVAL( MAXTESTS ), CSCYVAL( MAXTESTS ),
$ DESCX( DLEN_ ), DESCY( DLEN_ ), IERR( 2 ),
$ IMBXVAL( MAXTESTS ), IMBYVAL( MAXTESTS ),
$ INBXVAL( MAXTESTS ), INBYVAL( MAXTESTS ),
$ INCXVAL( MAXTESTS ), INCYVAL( MAXTESTS ),
$ IXVAL( MAXTESTS ), IYVAL( MAXTESTS ),
$ JXVAL( MAXTESTS ), JYVAL( MAXTESTS ),
$ MBXVAL( MAXTESTS ), MBYVAL( MAXTESTS ),
$ MXVAL( MAXTESTS ), MYVAL( MAXTESTS ),
$ NBXVAL( MAXTESTS ), NBYVAL( MAXTESTS ),
$ NVAL( MAXTESTS ), NXVAL( MAXTESTS ),
$ NYVAL( MAXTESTS ), PVAL( MAXTESTS ),
$ QVAL( MAXTESTS ), RSCXVAL( MAXTESTS ),
$ RSCYVAL( MAXTESTS )
REAL MEM( MEMSIZ )
DOUBLE PRECISION CTIME( 1 ), WTIME( 1 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_BARRIER, BLACS_EXIT, BLACS_GET,
$ BLACS_GRIDEXIT, BLACS_GRIDINFO, BLACS_GRIDINIT,
$ BLACS_PINFO, IGSUM2D, PB_BOOT, PB_COMBINE,
$ PB_TIMER, PSAMAX, PSASUM, PSAXPY,
$ PSBLA1TIMINFO, PSCOPY, PSDOT, PSLAGEN, PSNRM2,
$ PSSCAL, PSSWAP, PVDESCCHK, PVDIMCHK
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Common Blocks ..
CHARACTER*7 SNAMES( NSUBS )
LOGICAL ABRTFLG
INTEGER INFO, NBLOG
COMMON /SNAMEC/SNAMES
COMMON /INFOC/INFO, NBLOG
COMMON /PBERRORC/NOUT, ABRTFLG
* ..
* .. Data Statements ..
DATA SNAMES/'PSSWAP ', 'PSSCAL ', 'PSCOPY ',
$ 'PSAXPY ', 'PSDOT ', 'PSNRM2 ',
$ 'PSASUM ', 'PSAMAX '/
DATA YCHECK/.TRUE., .FALSE., .TRUE., .TRUE., .TRUE.,
$ .FALSE., .FALSE., .FALSE./
* ..
* .. Executable Statements ..
*
* Initialization
*
* Set flag so that the PBLAS error handler won't abort on errors, so
* that the tester will detect unsupported operations.
*
ABRTFLG = .FALSE.
*
* Seeds for random matrix generations.
*
IXSEED = 100
IYSEED = 200
*
* Get starting information
*
CALL BLACS_PINFO( IAM, NPROCS )
CALL PSBLA1TIMINFO( OUTFILE, NOUT, NTESTS, NVAL, MXVAL, NXVAL,
$ IMBXVAL, MBXVAL, INBXVAL, NBXVAL, RSCXVAL,
$ CSCXVAL, IXVAL, JXVAL, INCXVAL, MYVAL,
$ NYVAL, IMBYVAL, MBYVAL, INBYVAL, NBYVAL,
$ RSCYVAL, CSCYVAL, IYVAL, JYVAL, INCYVAL,
$ MAXTESTS, NGRIDS, PVAL, MAXGRIDS, QVAL,
$ MAXGRIDS, LTEST, IAM, NPROCS, ALPHA, MEM )
*
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9986 )
*
* Loop over different process grids
*
DO 60 I = 1, NGRIDS
*
NPROW = PVAL( I )
NPCOL = QVAL( I )
*
* Make sure grid information is correct
*
IERR( 1 ) = 0
IF( NPROW.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPROW', NPROW
IERR( 1 ) = 1
ELSE IF( NPCOL.LT.1 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9999 ) 'GRID SIZE', 'NPCOL', NPCOL
IERR( 1 ) = 1
ELSE IF( NPROW*NPCOL.GT.NPROCS ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9998 ) NPROW*NPCOL, NPROCS
IERR( 1 ) = 1
END IF
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9997 ) 'GRID'
GO TO 60
END IF
*
* Define process grid
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', NPROW, NPCOL )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Go to bottom of process grid loop if this case doesn't use my
* process
*
IF( MYROW.GE.NPROW .OR. MYCOL.GE.NPCOL )
$ GO TO 60
*
* Loop over number of tests
*
DO 50 J = 1, NTESTS
*
* Get the test parameters
*
N = NVAL( J )
MX = MXVAL( J )
NX = NXVAL( J )
IMBX = IMBXVAL( J )
MBX = MBXVAL( J )
INBX = INBXVAL( J )
NBX = NBXVAL( J )
RSRCX = RSCXVAL( J )
CSRCX = CSCXVAL( J )
IX = IXVAL( J )
JX = JXVAL( J )
INCX = INCXVAL( J )
MY = MYVAL( J )
NY = NYVAL( J )
IMBY = IMBYVAL( J )
MBY = MBYVAL( J )
INBY = INBYVAL( J )
NBY = NBYVAL( J )
RSRCY = RSCYVAL( J )
CSRCY = CSCYVAL( J )
IY = IYVAL( J )
JY = JYVAL( J )
INCY = INCYVAL( J )
*
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9996 ) J, NPROW, NPCOL
WRITE( NOUT, FMT = * )
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9994 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9993 ) N, IX, JX, MX, NX, IMBX, INBX,
$ MBX, NBX, RSRCX, CSRCX, INCX
*
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9992 )
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9993 ) N, IY, JY, MY, NY, IMBY, INBY,
$ MBY, NBY, RSRCY, CSRCY, INCY
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = 9983 )
END IF
*
* Check the validity of the input and initialize DESC_
*
CALL PVDESCCHK( ICTXT, NOUT, 'X', DESCX,
$ BLOCK_CYCLIC_2D_INB, MX, NX, IMBX, INBX,
$ MBX, NBX, RSRCX, CSRCX, INCX, MPX, NQX,
$ IPREX, IMIDX, IPOSTX, 0, 0, IERR( 1 ) )
CALL PVDESCCHK( ICTXT, NOUT, 'Y', DESCY,
$ BLOCK_CYCLIC_2D_INB, MY, NY, IMBY, INBY,
$ MBY, NBY, RSRCY, CSRCY, INCY, MPY, NQY,
$ IPREY, IMIDY, IPOSTY, 0, 0, IERR( 2 ) )
*
IF( IERR( 1 ).GT.0 .OR. IERR( 2 ).GT.0 )
$ GO TO 40
*
* Assign pointers into MEM for matrices corresponding to
* vectors X and Y. Ex: IPX starts at position MEM( 1 ).
*
IPX = 1
IPY = IPX + DESCX( LLD_ ) * NQX
*
* Check if sufficient memory.
*
MEMREQD = IPY + DESCY( LLD_ ) * NQY - 1
IERR( 1 ) = 0
IF( MEMREQD.GT.MEMSIZ ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9990 ) MEMREQD*REALSZ
IERR( 1 ) = 1
END IF
*
* Check all processes for an error
*
CALL IGSUM2D( ICTXT, 'All', ' ', 1, 1, IERR, 1, -1, 0 )
*
IF( IERR( 1 ).GT.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9991 )
GO TO 40
END IF
*
* Loop over all PBLAS 1 routines
*
DO 30 K = 1, NSUBS
*
* Continue only if this sub has to be tested.
*
IF( .NOT.LTEST( K ) )
$ GO TO 30
*
* Check the validity of the operand sizes
*
CALL PVDIMCHK( ICTXT, NOUT, N, 'X', IX, JX, DESCX, INCX,
$ IERR( 1 ) )
CALL PVDIMCHK( ICTXT, NOUT, N, 'Y', IY, JY, DESCY, INCY,
$ IERR( 2 ) )
*
IF( IERR( 1 ).NE.0 .OR. IERR( 2 ).NE.0 )
$ GO TO 30
*
* Generate distributed matrices X and Y
*
CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MX, NX, 1,
$ 1, DESCX, IXSEED, MEM( IPX ),
$ DESCX( LLD_ ) )
IF( YCHECK( K ) )
$ CALL PSLAGEN( .FALSE., 'None', 'No diag', 0, MY, NY,
$ 1, 1, DESCY, IYSEED, MEM( IPY ),
$ DESCY( LLD_ ) )
*
INFO = 0
CALL PB_BOOT()
CALL BLACS_BARRIER( ICTXT, 'All' )
*
* Call the PBLAS routine
*
IF( K.EQ.1 ) THEN
*
* Test PSSWAP
*
ADDS = 0.0D+0
MULTS = 0.0D+0
CALL PB_TIMER( 1 )
CALL PSSWAP( N, MEM( IPX ), IX, JX, DESCX, INCX,
$ MEM( IPY ), IY, JY, DESCY, INCY )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.2 ) THEN
*
* Test PSSCAL
*
ADDS = 0.0D+0
MULTS = DBLE( N )
CALL PB_TIMER( 1 )
CALL PSSCAL( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
$ INCX )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.3 ) THEN
*
* Test PSCOPY
*
ADDS = 0.0D+0
MULTS = 0.0D+0
CALL PB_TIMER( 1 )
CALL PSCOPY( N, MEM( IPX ), IX, JX, DESCX, INCX,
$ MEM( IPY ), IY, JY, DESCY, INCY )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.4 ) THEN
*
* Test PSAXPY
*
ADDS = DBLE( N )
MULTS = DBLE( N )
CALL PB_TIMER( 1 )
CALL PSAXPY( N, ALPHA, MEM( IPX ), IX, JX, DESCX,
$ INCX, MEM( IPY ), IY, JY, DESCY, INCY )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.5 ) THEN
*
* Test PSDOT
*
ADDS = DBLE( N-1 )
MULTS = DBLE( N )
CALL PB_TIMER( 1 )
CALL PSDOT( N, PSCLR, MEM( IPX ), IX, JX, DESCX, INCX,
$ MEM( IPY ), IY, JY, DESCY, INCY )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.6 ) THEN
*
* Test PSNRM2
*
ADDS = DBLE( N-1 )
MULTS = DBLE( N )
CALL PB_TIMER( 1 )
CALL PSNRM2( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
$ INCX )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.7 ) THEN
*
* Test PSASUM
*
ADDS = DBLE( N - 1 )
MULTS = 0.0D+0
CALL PB_TIMER( 1 )
CALL PSASUM( N, PUSCLR, MEM( IPX ), IX, JX, DESCX,
$ INCX )
CALL PB_TIMER( 1 )
*
ELSE IF( K.EQ.8 ) THEN
*
ADDS = 0.0D+0
MULTS = 0.0D+0
CALL PB_TIMER( 1 )
CALL PSAMAX( N, PSCLR, PISCLR, MEM( IPX ), IX, JX,
$ DESCX, INCX )
CALL PB_TIMER( 1 )
*
END IF
*
* Check if the operation has been performed.
*
IF( INFO.NE.0 ) THEN
IF( IAM.EQ.0 )
$ WRITE( NOUT, FMT = 9985 ) INFO
GO TO 30
END IF
*
CALL PB_COMBINE( ICTXT, 'All', '>', 'W', 1, 1, WTIME )
CALL PB_COMBINE( ICTXT, 'All', '>', 'C', 1, 1, CTIME )
*
* Only node 0 prints timing test result
*
IF( IAM.EQ.0 ) THEN
*
* Calculate total flops
*
NOPS = ADDS + MULTS
*
* Print WALL time if machine supports it
*
IF( WTIME( 1 ).GT.0.0D+0 ) THEN
WFLOPS = NOPS / ( WTIME( 1 ) * 1.0D+6 )
ELSE
WFLOPS = 0.0D+0
END IF
*
* Print CPU time if machine supports it
*
IF( CTIME( 1 ).GT.0.0D+0 ) THEN
CFLOPS = NOPS / ( CTIME( 1 ) * 1.0D+6 )
ELSE
CFLOPS = 0.0D+0
END IF
*
WRITE( NOUT, FMT = 9984 ) SNAMES( K ), WTIME( 1 ),
$ WFLOPS, CTIME( 1 ), CFLOPS
*
END IF
*
30 CONTINUE
*
40 IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = 9995 )
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9988 ) J
END IF
*
50 CONTINUE
*
IF( IAM.EQ.0 ) THEN
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9987 )
WRITE( NOUT, FMT = * )
END IF
*
CALL BLACS_GRIDEXIT( ICTXT )
*
60 CONTINUE
*
CALL BLACS_EXIT( 0 )
*
9999 FORMAT( 'ILLEGAL ', A, ': ', A, ' = ', I10,
$ ' should be at least 1' )
9998 FORMAT( 'ILLEGAL GRID: NPROW*NPCOL = ', I4,
$ '. It can be at most', I4 )
9997 FORMAT( 'Bad ', A, ' parameters: going on to next test case.' )
9996 FORMAT( 2X, 'Test number ', I2 , ' started on a ', I4, ' x ',
$ I4, ' process grid.' )
9995 FORMAT( 2X, '---------------------------------------------------',
$ '--------------------------' )
9994 FORMAT( 2X, ' N IX JX MX NX IMBX INBX',
$ ' MBX NBX RSRCX CSRCX INCX' )
9993 FORMAT( 2X,I6,1X,I6,1X,I6,1X,I6,1X,I6,1X,I5,1X,I5,1X,I5,1X,I5,1X,
$ I5,1X,I5,1X,I6 )
9992 FORMAT( 2X, ' N IY JY MY NY IMBY INBY',
$ ' MBY NBY RSRCY CSRCY INCY' )
9991 FORMAT( 'Not enough memory for this test: going on to',
$ ' next test case.' )
9990 FORMAT( 'Not enough memory. Need: ', I12 )
9988 FORMAT( 2X, 'Test number ', I2, ' completed.' )
9987 FORMAT( 2X, 'End of Tests.' )
9986 FORMAT( 2X, 'Tests started.' )
9985 FORMAT( 2X, ' ***** Operation not supported, error code: ',
$ I5, ' *****' )
9984 FORMAT( 2X, '| ', A, 2X, F13.3, 2X, F13.3, 2X, F13.3, 2X, F13.3 )
9983 FORMAT( 2X, ' WALL time (s) WALL Mflops ',
$ ' CPU time (s) CPU Mflops' )
*
STOP
*
* End of PSBLA1TIM
*
END
SUBROUTINE PSBLA1TIMINFO( SUMMRY, NOUT, NMAT, NVAL, MXVAL, NXVAL,
$ IMBXVAL, MBXVAL, INBXVAL, NBXVAL,
$ RSCXVAL, CSCXVAL, IXVAL, JXVAL,
$ INCXVAL, MYVAL, NYVAL, IMBYVAL, MBYVAL,
$ INBYVAL, NBYVAL, RSCYVAL, CSCYVAL,
$ IYVAL, JYVAL, INCYVAL, LDVAL, NGRIDS,
$ PVAL, LDPVAL, QVAL, LDQVAL, LTEST, IAM,
$ NPROCS, ALPHA, WORK )
*
* -- PBLAS test routine (version 2.0) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* April 1, 1998
*
* .. Scalar Arguments ..
INTEGER IAM, LDPVAL, LDQVAL, LDVAL, NGRIDS, NMAT, NOUT,
$ NPROCS
REAL ALPHA
* ..
* .. Array Arguments ..
CHARACTER*( * ) SUMMRY
LOGICAL LTEST( * )
INTEGER CSCXVAL( LDVAL ), CSCYVAL( LDVAL ),
$ IMBXVAL( LDVAL ), IMBYVAL( LDVAL ),
$ INBXVAL( LDVAL ), INBYVAL( LDVAL ),
$ INCXVAL( LDVAL ), INCYVAL( LDVAL ),
$ IXVAL( LDVAL ), IYVAL( LDVAL ), JXVAL( LDVAL ),
$ JYVAL( LDVAL ), MBXVAL( LDVAL ),
$ MBYVAL( LDVAL ), MXVAL( LDVAL ),
$ MYVAL( LDVAL ), NBXVAL( LDVAL ),
$ NBYVAL( LDVAL ), NVAL( LDVAL ), NXVAL( LDVAL ),
$ NYVAL( LDVAL ), PVAL( LDPVAL ), QVAL( LDQVAL ),
$ RSCXVAL( LDVAL ), RSCYVAL( LDVAL ), WORK( * )
* ..
*
* Purpose
* =======
*
* PSBLA1TIMINFO get the needed startup information for timing various
* Level 1 PBLAS routines, and transmits it to all processes.
*
* Notes
* =====
*
* For packing the information we assumed that the length in bytes of an
* integer is equal to the length in bytes of a real single precision.
*
* Arguments
* =========
*
* SUMMRY (global output) CHARACTER*(*)
* On exit, SUMMRY is the name of output (summary) file (if
* any). SUMMRY is only defined for process 0.
*
* NOUT (global output) INTEGER
* On exit, NOUT specifies the unit number for the output file.
* When NOUT is 6, output to screen, when NOUT is 0, output to
* stderr. NOUT is only defined for process 0.
*
* NMAT (global output) INTEGER
* On exit, NMAT specifies the number of different test cases.
*
* NVAL (global output) INTEGER array
* On entry, NVAL is an array of dimension LDVAL. On exit, this
* array contains the values of N to run the code with.
*
* MXVAL (global output) INTEGER array
* On entry, MXVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCX( M_ ) to run the code
* with.
*
* NXVAL (global output) INTEGER array
* On entry, NXVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCX( N_ ) to run the code
* with.
*
* IMBXVAL (global output) INTEGER array
* On entry, IMBXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( IMB_ ) to run the
* code with.
*
* MBXVAL (global output) INTEGER array
* On entry, MBXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( MB_ ) to run the
* code with.
*
* INBXVAL (global output) INTEGER array
* On entry, INBXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( INB_ ) to run the
* code with.
*
* NBXVAL (global output) INTEGER array
* On entry, NBXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( NB_ ) to run the
* code with.
*
* RSCXVAL (global output) INTEGER array
* On entry, RSCXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( RSRC_ ) to run the
* code with.
*
* CSCXVAL (global output) INTEGER array
* On entry, CSCXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCX( CSRC_ ) to run the
* code with.
*
* IXVAL (global output) INTEGER array
* On entry, IXVAL is an array of dimension LDVAL. On exit, this
* array contains the values of IX to run the code with.
*
* JXVAL (global output) INTEGER array
* On entry, JXVAL is an array of dimension LDVAL. On exit, this
* array contains the values of JX to run the code with.
*
* INCXVAL (global output) INTEGER array
* On entry, INCXVAL is an array of dimension LDVAL. On exit,
* this array contains the values of INCX to run the code with.
*
* MYVAL (global output) INTEGER array
* On entry, MYVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCY( M_ ) to run the code
* with.
*
* NYVAL (global output) INTEGER array
* On entry, NYVAL is an array of dimension LDVAL. On exit, this
* array contains the values of DESCY( N_ ) to run the code
* with.
*
* IMBYVAL (global output) INTEGER array
* On entry, IMBYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( IMB_ ) to run the
* code with.
*
* MBYVAL (global output) INTEGER array
* On entry, MBYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( MB_ ) to run the
* code with.
*
* INBYVAL (global output) INTEGER array
* On entry, INBYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( INB_ ) to run the
* code with.
*
* NBYVAL (global output) INTEGER array
* On entry, NBYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( NB_ ) to run the
* code with.
*
* RSCYVAL (global output) INTEGER array
* On entry, RSCYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( RSRC_ ) to run the
* code with.
*
* CSCYVAL (global output) INTEGER array
* On entry, CSCYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of DESCY( CSRC_ ) to run the
* code with.
*
* IYVAL (global output) INTEGER array
* On entry, IYVAL is an array of dimension LDVAL. On exit, this
* array contains the values of IY to run the code with.
*
* JYVAL (global output) INTEGER array
* On entry, JYVAL is an array of dimension LDVAL. On exit, this
* array contains the values of JY to run the code with.
*
* INCYVAL (global output) INTEGER array
* On entry, INCYVAL is an array of dimension LDVAL. On exit,
* this array contains the values of INCY to run the code with.
*
* LDVAL (global input) INTEGER
* On entry, LDVAL specifies the maximum number of different va-
* lues that can be used for DESCX(:), IX, JX, INCX, DESCY(:),
* IY, JY and INCY. This is also the maximum number of test
* cases.
*
* NGRIDS (global output) INTEGER
* On exit, NGRIDS specifies the number of different values that
* can be used for P and Q.
*
* PVAL (global output) INTEGER array
* On entry, PVAL is an array of dimension LDPVAL. On exit, this
* array contains the values of P to run the code with.
*
* LDPVAL (global input) INTEGER
* On entry, LDPVAL specifies the maximum number of different
* values that can be used for P.
*
* QVAL (global output) INTEGER array
* On entry, QVAL is an array of dimension LDQVAL. On exit, this
* array contains the values of Q to run the code with.
*
* LDQVAL (global input) INTEGER
* On entry, LDQVAL specifies the maximum number of different
* values that can be used for Q.
*
* LTEST (global output) LOGICAL array
* On entry, LTEST is an array of dimension at least eight. On
* exit, if LTEST( i ) is .TRUE., the i-th Level 1 PBLAS routine
* will be tested. See the input file for the ordering of the
* routines.
*
* IAM (local input) INTEGER
* On entry, IAM specifies the number of the process executing
* this routine.
*
* NPROCS (global input) INTEGER
* On entry, NPROCS specifies the total number of processes.
*
* ALPHA (global output) REAL
* On exit, ALPHA specifies the value of alpha to be used in all
* the test cases.
*
* WORK (local workspace) INTEGER array
* On entry, WORK is an array of dimension at least
* MAX( 2, 2*NGRIDS+23*NMAT+NSUBS ) with NSUBS = 8. This array
* is used to pack all output arrays in order to send info in
* one message.
*
* -- Written on April 1, 1998 by
* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NIN, NSUBS
PARAMETER ( NIN = 11, NSUBS = 8 )
* ..
* .. Local Scalars ..
LOGICAL LTESTT
INTEGER I, ICTXT, J
* ..
* .. Local Arrays ..
CHARACTER*7 SNAMET
CHARACTER*79 USRINFO
* ..
* .. External Subroutines ..
EXTERNAL BLACS_ABORT, BLACS_GET, BLACS_GRIDEXIT,
$ BLACS_GRIDINIT, BLACS_SETUP, ICOPY, IGEBR2D,
$ IGEBS2D, SGEBR2D, SGEBS2D
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Common Blocks ..
CHARACTER*7 SNAMES( NSUBS )
COMMON /SNAMEC/SNAMES
* ..
* .. Executable Statements ..
*
*
* Process 0 reads the input data, broadcasts to other processes and
* writes needed information to NOUT
*
IF( IAM.EQ.0 ) THEN
*
* Open file and skip data file header
*
OPEN( NIN, FILE='PSBLAS1TIM.dat', STATUS='OLD' )
READ( NIN, FMT = * ) SUMMRY
SUMMRY = ' '
*
* Read in user-supplied info about machine type, compiler, etc.
*
READ( NIN, FMT = 9999 ) USRINFO
*
* Read name and unit number for summary output file
*
READ( NIN, FMT = * ) SUMMRY
READ( NIN, FMT = * ) NOUT
IF( NOUT.NE.0 .AND. NOUT.NE.6 )
$ OPEN( NOUT, FILE = SUMMRY, STATUS = 'UNKNOWN' )
*
* Read and check the parameter values for the tests.
*
* Get number of grids
*
READ( NIN, FMT = * ) NGRIDS
IF( NGRIDS.LT.1 .OR. NGRIDS.GT.LDPVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Grids', LDPVAL
GO TO 100
ELSE IF( NGRIDS.GT.LDQVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Grids', LDQVAL
GO TO 100
END IF
*
* Get values of P and Q
*
READ( NIN, FMT = * ) ( PVAL( I ), I = 1, NGRIDS )
READ( NIN, FMT = * ) ( QVAL( I ), I = 1, NGRIDS )
*
* Read ALPHA
*
READ( NIN, FMT = * ) ALPHA
*
* Read number of tests.
*
READ( NIN, FMT = * ) NMAT
IF( NMAT.LT.1 .OR. NMAT.GT.LDVAL ) THEN
WRITE( NOUT, FMT = 9998 ) 'Tests', LDVAL
GO TO 100
END IF
*
* Read in input data into arrays.
*
READ( NIN, FMT = * ) ( NVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IMBXVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INBXVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( RSCXVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( CSCXVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( JXVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INCXVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IMBYVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INBYVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( MBYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( NBYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( RSCYVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( CSCYVAL( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( IYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( JYVAL ( I ), I = 1, NMAT )
READ( NIN, FMT = * ) ( INCYVAL( I ), I = 1, NMAT )
*
* Read names of subroutines and flags which indicate
* whether they are to be tested.
*
DO 10 I = 1, NSUBS
LTEST( I ) = .FALSE.
10 CONTINUE
20 CONTINUE
READ( NIN, FMT = 9996, END = 50 ) SNAMET, LTESTT
DO 30 I = 1, NSUBS
IF( SNAMET.EQ.SNAMES( I ) )
$ GO TO 40
30 CONTINUE
*
WRITE( NOUT, FMT = 9995 )SNAMET
GO TO 100
*
40 CONTINUE
LTEST( I ) = LTESTT
GO TO 20
*
50 CONTINUE
*
* Close input file
*
CLOSE ( NIN )
*
* For pvm only: if virtual machine not set up, allocate it and
* spawn the correct number of processes.
*
IF( NPROCS.LT.1 ) THEN
NPROCS = 0
DO 60 I = 1, NGRIDS
NPROCS = MAX( NPROCS, PVAL( I )*QVAL( I ) )
60 CONTINUE
CALL BLACS_SETUP( IAM, NPROCS )
END IF
*
* Temporarily define blacs grid to include all processes so
* information can be broadcast to all processes
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
* Pack information arrays and broadcast
*
CALL SGEBS2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1 )
*
WORK( 1 ) = NGRIDS
WORK( 2 ) = NMAT
CALL IGEBS2D( ICTXT, 'All', ' ', 2, 1, WORK, 2 )
*
I = 1
CALL ICOPY( NGRIDS, PVAL, 1, WORK( I ), 1 )
I = I + NGRIDS
CALL ICOPY( NGRIDS, QVAL, 1, WORK( I ), 1 )
I = I + NGRIDS
CALL ICOPY( NMAT, NVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IMBXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INBXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, RSCXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, CSCXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, JXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INCXVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IMBYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INBYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, MBYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, NBYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, RSCYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, CSCYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, IYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, JYVAL, 1, WORK( I ), 1 )
I = I + NMAT
CALL ICOPY( NMAT, INCYVAL, 1, WORK( I ), 1 )
I = I + NMAT
*
DO 70 J = 1, NSUBS
IF( LTEST( J ) ) THEN
WORK( I ) = 1
ELSE
WORK( I ) = 0
END IF
I = I + 1
70 CONTINUE
I = I - 1
CALL IGEBS2D( ICTXT, 'All', ' ', I, 1, WORK, I )
*
* regurgitate input
*
WRITE( NOUT, FMT = 9999 )
$ 'Level 1 PBLAS timing program.'
WRITE( NOUT, FMT = 9999 ) USRINFO
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )
$ 'Timing of the real single precision '//
$ 'Level 1 PBLAS'
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9999 )
$ 'The following parameter values will be used:'
WRITE( NOUT, FMT = * )
WRITE( NOUT, FMT = 9993 ) NMAT
WRITE( NOUT, FMT = 9992 ) NGRIDS
WRITE( NOUT, FMT = 9990 )
$ 'P', ( PVAL(I), I = 1, MIN(NGRIDS, 5) )
IF( NGRIDS.GT.5 )
$ WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 6,
$ MIN( 10, NGRIDS ) )
IF( NGRIDS.GT.10 )
$ WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 11,
$ MIN( 15, NGRIDS ) )
IF( NGRIDS.GT.15 )
$ WRITE( NOUT, FMT = 9991 ) ( PVAL(I), I = 16, NGRIDS )
WRITE( NOUT, FMT = 9990 )
$ 'Q', ( QVAL(I), I = 1, MIN(NGRIDS, 5) )
IF( NGRIDS.GT.5 )
$ WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 6,
$ MIN( 10, NGRIDS ) )
IF( NGRIDS.GT.10 )
$ WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 11,
$ MIN( 15, NGRIDS ) )
IF( NGRIDS.GT.15 )
$ WRITE( NOUT, FMT = 9991 ) ( QVAL(I), I = 16, NGRIDS )
WRITE( NOUT, FMT = 9994 ) ALPHA
IF( LTEST( 1 ) ) THEN
WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... Yes'
ELSE
WRITE( NOUT, FMT = 9989 ) SNAMES( 1 ), ' ... No '
END IF
DO 80 I = 2, NSUBS
IF( LTEST( I ) ) THEN
WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... Yes'
ELSE
WRITE( NOUT, FMT = 9988 ) SNAMES( I ), ' ... No '
END IF
80 CONTINUE
WRITE( NOUT, FMT = * )
*
ELSE
*
* If in pvm, must participate setting up virtual machine
*
IF( NPROCS.LT.1 )
$ CALL BLACS_SETUP( IAM, NPROCS )
*
* Temporarily define blacs grid to include all processes so
* information can be broadcast to all processes
*
CALL BLACS_GET( -1, 0, ICTXT )
CALL BLACS_GRIDINIT( ICTXT, 'Row-major', 1, NPROCS )
*
CALL SGEBR2D( ICTXT, 'All', ' ', 1, 1, ALPHA, 1, 0, 0 )
*
CALL IGEBR2D( ICTXT, 'All', ' ', 2, 1, WORK, 2, 0, 0 )
NGRIDS = WORK( 1 )
NMAT = WORK( 2 )
*
I = 2*NGRIDS + 23*NMAT + NSUBS
CALL IGEBR2D( ICTXT, 'All', ' ', I, 1, WORK, I, 0, 0 )
*
I = 1
CALL ICOPY( NGRIDS, WORK( I ), 1, PVAL, 1 )
I = I + NGRIDS
CALL ICOPY( NGRIDS, WORK( I ), 1, QVAL, 1 )
I = I + NGRIDS
CALL ICOPY( NMAT, WORK( I ), 1, NVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IMBXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INBXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, RSCXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, CSCXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, JXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INCXVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IMBYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INBYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, MBYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, NBYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, RSCYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, CSCYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, IYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, JYVAL, 1 )
I = I + NMAT
CALL ICOPY( NMAT, WORK( I ), 1, INCYVAL, 1 )
I = I + NMAT
*
DO 90 J = 1, NSUBS
IF( WORK( I ).EQ.1 ) THEN
LTEST( J ) = .TRUE.
ELSE
LTEST( J ) = .FALSE.
END IF
I = I + 1
90 CONTINUE
*
END IF
*
CALL BLACS_GRIDEXIT( ICTXT )
*
RETURN
*
100 WRITE( NOUT, FMT = 9997 )
CLOSE( NIN )
IF( NOUT.NE.6 .AND. NOUT.NE.0 )
$ CLOSE( NOUT )
CALL BLACS_ABORT( ICTXT, 1 )
*
STOP
*
9999 FORMAT( A )
9998 FORMAT( ' Number of values of ',5A, ' is less than 1 or greater ',
$ 'than ', I2 )
9997 FORMAT( ' Illegal input in file ',40A,'. Aborting run.' )
9996 FORMAT( A7, L2 )
9995 FORMAT( ' Subprogram name ', A7, ' not recognized',
$ /' ******* TESTS ABANDONED *******' )
9994 FORMAT( 2X, 'Alpha : ', G16.6 )
9993 FORMAT( 2X, 'Number of Tests : ', I6 )
9992 FORMAT( 2X, 'Number of process grids : ', I6 )
9991 FORMAT( 2X, ' : ', 5I6 )
9990 FORMAT( 2X, A1, ' : ', 5I6 )
9989 FORMAT( 2X, 'Routines to be tested : ', A, A8 )
9988 FORMAT( 2X, ' ', A, A8 )
*
* End of PSBLA1TIMINFO
*
END
|