1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
SUBROUTINE PCTREVC( SIDE, HOWMNY, SELECT, N, T, DESCT, VL, DESCVL,
$ VR, DESCVR, MM, M, WORK, RWORK, INFO )
*
* -- ScaLAPACK routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* July 31, 2001
*
* .. Scalar Arguments ..
CHARACTER HOWMNY, SIDE
INTEGER INFO, M, MM, N
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
INTEGER DESCT( * ), DESCVL( * ), DESCVR( * )
REAL RWORK( * )
COMPLEX T( * ), VL( * ), VR( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PCTREVC computes some or all of the right and/or left eigenvectors of
* a complex upper triangular matrix T in parallel.
*
* The right eigenvector x and the left eigenvector y of T corresponding
* to an eigenvalue w are defined by:
*
* T*x = w*x, y'*T = w*y'
*
* where y' denotes the conjugate transpose of the vector y.
*
* If all eigenvectors are requested, the routine may either return the
* matrices X and/or Y of right or left eigenvectors of T, or the
* products Q*X and/or Q*Y, where Q is an input unitary
* matrix. If T was obtained from the Schur factorization of an
* original matrix A = Q*T*Q', then Q*X and Q*Y are the matrices of
* right or left eigenvectors of A.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension r x c.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the r processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the c processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* SIDE (global input) CHARACTER*1
* = 'R': compute right eigenvectors only;
* = 'L': compute left eigenvectors only;
* = 'B': compute both right and left eigenvectors.
*
* HOWMNY (global input) CHARACTER*1
* = 'A': compute all right and/or left eigenvectors;
* = 'B': compute all right and/or left eigenvectors,
* and backtransform them using the input matrices
* supplied in VR and/or VL;
* = 'S': compute selected right and/or left eigenvectors,
* specified by the logical array SELECT.
*
* SELECT (global input) LOGICAL array, dimension (N)
* If HOWMNY = 'S', SELECT specifies the eigenvectors to be
* computed.
* If HOWMNY = 'A' or 'B', SELECT is not referenced.
* To select the eigenvector corresponding to the j-th
* eigenvalue, SELECT(j) must be set to .TRUE..
*
* N (global input) INTEGER
* The order of the matrix T. N >= 0.
*
* T (global input/output) COMPLEX array, dimension
* (DESCT(LLD_),*)
* The upper triangular matrix T. T is modified, but restored
* on exit.
*
* DESCT (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix T.
*
* VL (global input/output) COMPLEX array, dimension
* (DESCVL(LLD_),MM)
* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
* contain an N-by-N matrix Q (usually the unitary matrix Q of
* Schur vectors returned by CHSEQR).
* On exit, if SIDE = 'L' or 'B', VL contains:
* if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
* if HOWMNY = 'B', the matrix Q*Y;
* if HOWMNY = 'S', the left eigenvectors of T specified by
* SELECT, stored consecutively in the columns
* of VL, in the same order as their
* eigenvalues.
* If SIDE = 'R', VL is not referenced.
*
* DESCVL (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix VL.
*
* VR (global input/output) COMPLEX array, dimension
* (DESCVR(LLD_),MM)
* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
* contain an N-by-N matrix Q (usually the unitary matrix Q of
* Schur vectors returned by CHSEQR).
* On exit, if SIDE = 'R' or 'B', VR contains:
* if HOWMNY = 'A', the matrix X of right eigenvectors of T;
* if HOWMNY = 'B', the matrix Q*X;
* if HOWMNY = 'S', the right eigenvectors of T specified by
* SELECT, stored consecutively in the columns
* of VR, in the same order as their
* eigenvalues.
* If SIDE = 'L', VR is not referenced.
*
* DESCVR (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix VR.
*
* MM (global input) INTEGER
* The number of columns in the arrays VL and/or VR. MM >= M.
*
* M (global output) INTEGER
* The number of columns in the arrays VL and/or VR actually
* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M
* is set to N. Each selected eigenvector occupies one
* column.
*
* WORK (local workspace) COMPLEX array,
* dimension ( 2*DESCT(LLD_) )
* Additional workspace may be required if PCLATTRS is updated
* to use WORK.
*
* RWORK (local workspace) REAL array,
* dimension ( DESCT(LLD_) )
*
* INFO (global output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The algorithm used in this program is basically backward (forward)
* substitution. It is the hope that scaling would be used to make the
* the code robust against possible overflow. But scaling has not yet
* been implemented in PCLATTRS which is called by this routine to solve
* the triangular systems. PCLATTRS just calls PCTRSV.
*
* Each eigenvector is normalized so that the element of largest
* magnitude has magnitude 1; here the magnitude of a complex number
* (x,y) is taken to be |x| + |y|.
*
* Further Details
* ===============
*
* Implemented by Mark R. Fahey, June, 2000
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
$ MB_, NB_, RSRC_, CSRC_, LLD_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
LOGICAL ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
INTEGER CONTXT, CSRC, I, ICOL, II, IROW, IS, ITMP1,
$ ITMP2, J, K, KI, LDT, LDVL, LDVR, LDW, MB,
$ MYCOL, MYROW, NB, NPCOL, NPROW, RSRC
REAL SELF
REAL OVFL, REMAXD, SCALE, SMIN, SMLNUM, ULP, UNFL
COMPLEX CDUM, REMAXC, SHIFT
* ..
* .. Local Arrays ..
INTEGER DESCW( DLEN_ )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL PSLAMCH
EXTERNAL LSAME, PSLAMCH
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DESCINIT, SGSUM2D, IGAMN2D,
$ INFOG2L, PSLABAD, PSCASUM, PXERBLA, PCAMAX,
$ PCCOPY, PCSSCAL, PCGEMV, PCLASET, PCLATTRS,
$ CGSUM2D
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, REAL, CMPLX, CONJG, AIMAG, MAX
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* This is just to keep ftnchek happy
IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
$ RSRC_.LT.0 )RETURN
*
CONTXT = DESCT( CTXT_ )
RSRC = DESCT( RSRC_ )
CSRC = DESCT( CSRC_ )
MB = DESCT( MB_ )
NB = DESCT( NB_ )
LDT = DESCT( LLD_ )
LDW = LDT
LDVR = DESCVR( LLD_ )
LDVL = DESCVL( LLD_ )
*
CALL BLACS_GRIDINFO( CONTXT, NPROW, NPCOL, MYROW, MYCOL )
SELF = MYROW*NPCOL + MYCOL
*
* Decode and test the input parameters
*
BOTHV = LSAME( SIDE, 'B' )
RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
ALLV = LSAME( HOWMNY, 'A' )
OVER = LSAME( HOWMNY, 'B' ) .OR. LSAME( HOWMNY, 'O' )
SOMEV = LSAME( HOWMNY, 'S' )
*
* Set M to the number of columns required to store the selected
* eigenvectors.
*
IF( SOMEV ) THEN
M = 0
DO 10 J = 1, N
IF( SELECT( J ) )
$ M = M + 1
10 CONTINUE
ELSE
M = N
END IF
*
INFO = 0
IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
INFO = -1
ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( MM.LT.M ) THEN
INFO = -11
END IF
CALL IGAMN2D( CONTXT, 'ALL', ' ', 1, 1, INFO, 1, ITMP1, ITMP2, -1,
$ -1, -1 )
IF( INFO.LT.0 ) THEN
CALL PXERBLA( CONTXT, 'PCTREVC', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
* Set the constants to control overflow.
*
UNFL = PSLAMCH( CONTXT, 'Safe minimum' )
OVFL = ONE / UNFL
CALL PSLABAD( CONTXT, UNFL, OVFL )
ULP = PSLAMCH( CONTXT, 'Precision' )
SMLNUM = UNFL*( N / ULP )
*
* Store the diagonal elements of T in working array WORK( LDW+1 ).
*
DO 20 I = 1, N
CALL INFOG2L( I, I, DESCT, NPROW, NPCOL, MYROW, MYCOL, IROW,
$ ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
WORK( LDW+IROW ) = T( ( ICOL-1 )*LDT+IROW )
END IF
20 CONTINUE
*
* Compute 1-norm of each column of strictly upper triangular
* part of T to control overflow in triangular solver. Computed,
* but not used. For use in PCLATTRS.
*
RWORK( 1 ) = ZERO
DO 30 J = 2, N
CALL PSCASUM( J-1, RWORK( J ), T, 1, J, DESCT, 1 )
30 CONTINUE
* I replicate the norms in RWORK. Should they be distributed
* over the process rows?
CALL SGSUM2D( CONTXT, 'Row', ' ', N, 1, RWORK, 1, -1, -1 )
*
IF( RIGHTV ) THEN
*
* Compute right eigenvectors.
*
* Need to set the distribution pattern of WORK
*
CALL DESCINIT( DESCW, N, 1, NB, 1, RSRC, CSRC, CONTXT, LDW,
$ INFO )
*
IS = M
DO 70 KI = N, 1, -1
*
IF( SOMEV ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 70
END IF
*
SMIN = ZERO
SHIFT = CZERO
CALL INFOG2L( KI, KI, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
SHIFT = T( ( ICOL-1 )*LDT+IROW )
SMIN = MAX( ULP*( CABS1( SHIFT ) ), SMLNUM )
END IF
CALL SGSUM2D( CONTXT, 'ALL', ' ', 1, 1, SMIN, 1, -1, -1 )
CALL CGSUM2D( CONTXT, 'ALL', ' ', 1, 1, SHIFT, 1, -1, -1 )
*
CALL INFOG2L( 1, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL, IROW,
$ ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
WORK( 1 ) = CONE
END IF
*
* Form right-hand side. Distribute rhs onto first column
* of processor grid.
*
IF( KI.GT.1 ) THEN
CALL PCCOPY( KI-1, T, 1, KI, DESCT, 1, WORK, 1, 1, DESCW,
$ 1 )
END IF
DO 40 K = 1, KI - 1
CALL INFOG2L( K, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( MYROW.EQ.ITMP1 .AND. MYCOL.EQ.ITMP2 ) THEN
WORK( IROW ) = -WORK( IROW )
END IF
40 CONTINUE
*
* Solve the triangular system:
* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
*
DO 50 K = 1, KI - 1
CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
T( ( ICOL-1 )*LDT+IROW ) = T( ( ICOL-1 )*LDT+IROW ) -
$ SHIFT
IF( CABS1( T( ( ICOL-1 )*LDT+IROW ) ).LT.SMIN ) THEN
T( ( ICOL-1 )*LDT+IROW ) = CMPLX( SMIN )
END IF
END IF
50 CONTINUE
*
IF( KI.GT.1 ) THEN
CALL PCLATTRS( 'Upper', 'No transpose', 'Non-unit', 'Y',
$ KI-1, T, 1, 1, DESCT, WORK, 1, 1, DESCW,
$ SCALE, RWORK, INFO )
CALL INFOG2L( KI, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( MYROW.EQ.ITMP1 .AND. MYCOL.EQ.ITMP2 ) THEN
WORK( IROW ) = CMPLX( SCALE )
END IF
END IF
*
* Copy the vector x or Q*x to VR and normalize.
*
IF( .NOT.OVER ) THEN
CALL PCCOPY( KI, WORK, 1, 1, DESCW, 1, VR, 1, IS, DESCVR,
$ 1 )
*
CALL PCAMAX( KI, REMAXC, II, VR, 1, IS, DESCVR, 1 )
REMAXD = ONE / MAX( CABS1( REMAXC ), UNFL )
CALL PCSSCAL( KI, REMAXD, VR, 1, IS, DESCVR, 1 )
*
CALL PCLASET( ' ', N-KI, 1, CZERO, CZERO, VR, KI+1, IS,
$ DESCVR )
ELSE
IF( KI.GT.1 )
$ CALL PCGEMV( 'N', N, KI-1, CONE, VR, 1, 1, DESCVR,
$ WORK, 1, 1, DESCW, 1, CMPLX( SCALE ),
$ VR, 1, KI, DESCVR, 1 )
*
CALL PCAMAX( N, REMAXC, II, VR, 1, KI, DESCVR, 1 )
REMAXD = ONE / MAX( CABS1( REMAXC ), UNFL )
CALL PCSSCAL( N, REMAXD, VR, 1, KI, DESCVR, 1 )
END IF
*
* Set back the original diagonal elements of T.
*
DO 60 K = 1, KI - 1
CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
T( ( ICOL-1 )*LDT+IROW ) = WORK( LDW+IROW )
END IF
60 CONTINUE
*
IS = IS - 1
70 CONTINUE
END IF
*
IF( LEFTV ) THEN
*
* Compute left eigenvectors.
*
* Need to set the distribution pattern of WORK
*
CALL DESCINIT( DESCW, N, 1, MB, 1, RSRC, CSRC, CONTXT, LDW,
$ INFO )
*
IS = 1
DO 110 KI = 1, N
*
IF( SOMEV ) THEN
IF( .NOT.SELECT( KI ) )
$ GO TO 110
END IF
*
SMIN = ZERO
SHIFT = CZERO
CALL INFOG2L( KI, KI, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
SHIFT = T( ( ICOL-1 )*LDT+IROW )
SMIN = MAX( ULP*( CABS1( SHIFT ) ), SMLNUM )
END IF
CALL SGSUM2D( CONTXT, 'ALL', ' ', 1, 1, SMIN, 1, -1, -1 )
CALL CGSUM2D( CONTXT, 'ALL', ' ', 1, 1, SHIFT, 1, -1, -1 )
*
CALL INFOG2L( N, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL, IROW,
$ ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
WORK( IROW ) = CONE
END IF
*
* Form right-hand side.
*
IF( KI.LT.N ) THEN
CALL PCCOPY( N-KI, T, KI, KI+1, DESCT, N, WORK, KI+1, 1,
$ DESCW, 1 )
END IF
DO 80 K = KI + 1, N
CALL INFOG2L( K, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( MYROW.EQ.ITMP1 .AND. MYCOL.EQ.ITMP2 ) THEN
WORK( IROW ) = -CONJG( WORK( IROW ) )
END IF
80 CONTINUE
*
* Solve the triangular system:
* (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK.
*
DO 90 K = KI + 1, N
CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
T( ( ICOL-1 )*LDT+IROW ) = T( ( ICOL-1 )*LDT+IROW ) -
$ SHIFT
IF( CABS1( T( ( ICOL-1 )*LDT+IROW ) ).LT.SMIN )
$ T( ( ICOL-1 )*LDT+IROW ) = CMPLX( SMIN )
END IF
90 CONTINUE
*
IF( KI.LT.N ) THEN
CALL PCLATTRS( 'Upper', 'Conjugate transpose', 'Nonunit',
$ 'Y', N-KI, T, KI+1, KI+1, DESCT, WORK,
$ KI+1, 1, DESCW, SCALE, RWORK, INFO )
CALL INFOG2L( KI, 1, DESCW, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( MYROW.EQ.ITMP1 .AND. MYCOL.EQ.ITMP2 ) THEN
WORK( IROW ) = CMPLX( SCALE )
END IF
END IF
*
* Copy the vector x or Q*x to VL and normalize.
*
IF( .NOT.OVER ) THEN
CALL PCCOPY( N-KI+1, WORK, KI, 1, DESCW, 1, VL, KI, IS,
$ DESCVL, 1 )
*
CALL PCAMAX( N-KI+1, REMAXC, II, VL, KI, IS, DESCVL, 1 )
REMAXD = ONE / MAX( CABS1( REMAXC ), UNFL )
CALL PCSSCAL( N-KI+1, REMAXD, VL, KI, IS, DESCVL, 1 )
*
CALL PCLASET( ' ', KI-1, 1, CZERO, CZERO, VL, 1, IS,
$ DESCVL )
ELSE
IF( KI.LT.N )
$ CALL PCGEMV( 'N', N, N-KI, CONE, VL, 1, KI+1, DESCVL,
$ WORK, KI+1, 1, DESCW, 1, CMPLX( SCALE ),
$ VL, 1, KI, DESCVL, 1 )
*
CALL PCAMAX( N, REMAXC, II, VL, 1, KI, DESCVL, 1 )
REMAXD = ONE / MAX( CABS1( REMAXC ), UNFL )
CALL PCSSCAL( N, REMAXD, VL, 1, KI, DESCVL, 1 )
END IF
*
* Set back the original diagonal elements of T.
*
DO 100 K = KI + 1, N
CALL INFOG2L( K, K, DESCT, NPROW, NPCOL, MYROW, MYCOL,
$ IROW, ICOL, ITMP1, ITMP2 )
IF( ( MYROW.EQ.ITMP1 ) .AND. ( MYCOL.EQ.ITMP2 ) ) THEN
T( ( ICOL-1 )*LDT+IROW ) = WORK( LDW+IROW )
END IF
100 CONTINUE
*
IS = IS + 1
110 CONTINUE
END IF
*
RETURN
*
* End of PCTREVC
*
END
|