1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
SUBROUTINE PDLAHRD( N, K, NB, A, IA, JA, DESCA, TAU, T, Y, IY, JY,
$ DESCY, WORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IA, IY, JA, JY, K, N, NB
* ..
* .. Array Arguments ..
INTEGER DESCA( * ), DESCY( * )
DOUBLE PRECISION A( * ), T( * ), TAU( * ), WORK( * ), Y( * )
* ..
*
* Purpose
* =======
*
* PDLAHRD reduces the first NB columns of a real general N-by-(N-K+1)
* distributed matrix A(IA:IA+N-1,JA:JA+N-K) so that elements below the
* k-th subdiagonal are zero. The reduction is performed by an orthogo-
* nal similarity transformation Q' * A * Q. The routine returns the
* matrices V and T which determine Q as a block reflector I - V*T*V',
* and also the matrix Y = A * V * T.
*
* This is an auxiliary routine called by PDGEHRD. In the following
* comments sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1).
*
* Arguments
* =========
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the distributed submatrix sub( A ).
* N >= 0.
*
* K (global input) INTEGER
* The offset for the reduction. Elements below the k-th
* subdiagonal in the first NB columns are reduced to zero.
*
* NB (global input) INTEGER
* The number of columns to be reduced.
*
* A (local input/local output) DOUBLE PRECISION pointer into
* the local memory to an array of dimension (LLD_A,
* LOCc(JA+N-K)). On entry, this array contains the the local
* pieces of the N-by-(N-K+1) general distributed matrix
* A(IA:IA+N-1,JA:JA+N-K). On exit, the elements on and above
* the k-th subdiagonal in the first NB columns are overwritten
* with the corresponding elements of the reduced distributed
* matrix; the elements below the k-th subdiagonal, with the
* array TAU, represent the matrix Q as a product of elementary
* reflectors. The other columns of A(IA:IA+N-1,JA:JA+N-K) are
* unchanged. See Further Details.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* TAU (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-2)
* The scalar factors of the elementary reflectors (see Further
* Details). TAU is tied to the distributed matrix A.
*
* T (local output) DOUBLE PRECISION array, dimension (NB_A,NB_A)
* The upper triangular matrix T.
*
* Y (local output) DOUBLE PRECISION pointer into the local memory
* to an array of dimension (LLD_Y,NB_A). On exit, this array
* contains the local pieces of the N-by-NB distributed
* matrix Y. LLD_Y >= LOCr(IA+N-1).
*
* IY (global input) INTEGER
* The row index in the global array Y indicating the first
* row of sub( Y ).
*
* JY (global input) INTEGER
* The column index in the global array Y indicating the
* first column of sub( Y ).
*
* DESCY (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix Y.
*
* WORK (local workspace) DOUBLE PRECISION array, dimension (NB)
*
* Further Details
* ===============
*
* The matrix Q is represented as a product of nb elementary reflectors
*
* Q = H(1) H(2) . . . H(nb).
*
* Each H(i) has the form
*
* H(i) = I - tau * v * v'
*
* where tau is a real scalar, and v is a real vector with
* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
* A(ia+i+k:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
*
* The elements of the vectors v together form the (n-k+1)-by-nb matrix
* V which is needed, with T and Y, to apply the transformation to the
* unreduced part of the matrix, using an update of the form:
* A(ia:ia+n-1,ja:ja+n-k) := (I-V*T*V')*(A(ia:ia+n-1,ja:ja+n-k)-Y*V').
*
* The contents of A(ia:ia+n-1,ja:ja+n-k) on exit are illustrated by the
* following example with n = 7, k = 3 and nb = 2:
*
* ( a h a a a )
* ( a h a a a )
* ( a h a a a )
* ( h h a a a )
* ( v1 h a a a )
* ( v1 v2 a a a )
* ( v1 v2 a a a )
*
* where a denotes an element of the original matrix
* A(ia:ia+n-1,ja:ja+n-k), h denotes a modified element of the upper
* Hessenberg matrix H, and vi denotes an element of the vector
* defining H(i).
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL IPROC
INTEGER I, IACOL, IAROW, ICTXT, IOFF, II, J, JJ, JL,
$ JT, JW, L, MYROW, MYCOL, NPCOL, NPROW, NQ
DOUBLE PRECISION EI
* ..
* .. Local Arrays ..
INTEGER DESCW( DLEN_ )
* ..
* .. External Functions ..
INTEGER NUMROC
EXTERNAL NUMROC
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DAXPY, DESCSET, DCOPY,
$ DSCAL, DTRMV, INFOG2L, PDELSET,
$ PDGEMV, PDLARFG, PDSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, MOD
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.1 )
$ RETURN
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
IOFF = MOD( JA-1, DESCA( NB_ ) )
CALL INFOG2L( IA+K, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II,
$ JJ, IAROW, IACOL )
*
IPROC = ( MYROW.EQ.IAROW .AND. MYCOL.EQ.IACOL )
NQ = NUMROC( N+JA-1, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - IOFF
*
JW = IOFF + 1
CALL DESCSET( DESCW, 1, DESCA( MB_ ), 1, DESCA( MB_ ), IAROW,
$ IACOL, ICTXT, 1 )
*
DO 10 L = 1, NB
I = IA + K + L - 2
J = JA + L - 1
*
IF( L.GT.1 ) THEN
*
* Update A(ia:ia+n-1,j)
*
* Compute i-th column of A - Y * V'
*
CALL PDGEMV( 'No transpose', N, L-1, -ONE, Y, IY, JY, DESCY,
$ A, I, JA, DESCA, DESCA( M_ ), ONE, A, IA, J,
$ DESCA, 1 )
*
* Apply I - V * T' * V' to this column (call it b) from the
* left, using the last column of T as workspace
*
* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows)
* ( V2 ) ( b2 )
*
* where V1 is unit lower triangular
*
* w := V1' * b1
*
IF( IPROC ) THEN
CALL DCOPY( L-1, A( (JJ+L-2)*DESCA( LLD_ )+II ), 1,
$ WORK( JW ), 1 )
CALL DTRMV( 'Lower', 'Transpose', 'Unit', L-1,
$ A( (JJ-1)*DESCA( LLD_ )+II ), DESCA( LLD_ ),
$ WORK( JW ), 1 )
END IF
*
* w := w + V2'*b2
*
CALL PDGEMV( 'Transpose', N-K-L+1, L-1, ONE, A, I+1, JA,
$ DESCA, A, I+1, J, DESCA, 1, ONE, WORK, 1, JW,
$ DESCW, DESCW( M_ ) )
*
* w := T'*w
*
IF( IPROC )
$ CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', L-1, T,
$ DESCA( NB_ ), WORK( JW ), 1 )
*
* b2 := b2 - V2*w
*
CALL PDGEMV( 'No transpose', N-K-L+1, L-1, -ONE, A, I+1, JA,
$ DESCA, WORK, 1, JW, DESCW, DESCW( M_ ), ONE,
$ A, I+1, J, DESCA, 1 )
*
* b1 := b1 - V1*w
*
IF( IPROC ) THEN
CALL DTRMV( 'Lower', 'No transpose', 'Unit', L-1,
$ A( (JJ-1)*DESCA( LLD_ )+II ), DESCA( LLD_ ),
$ WORK( JW ), 1 )
CALL DAXPY( L-1, -ONE, WORK( JW ), 1,
$ A( ( JJ+L-2 )*DESCA( LLD_ )+II ), 1 )
END IF
CALL PDELSET( A, I, J-1, DESCA, EI )
END IF
*
* Generate the elementary reflector H(i) to annihilate
* A(ia+k+i:ia+n-1,j)
*
CALL PDLARFG( N-K-L+1, EI, I+1, J, A, MIN( I+2, N+IA-1 ), J,
$ DESCA, 1, TAU )
CALL PDELSET( A, I+1, J, DESCA, ONE )
*
* Compute Y(iy:y+n-1,jy+l-1)
*
CALL PDGEMV( 'No transpose', N, N-K-L+1, ONE, A, IA, J+1,
$ DESCA, A, I+1, J, DESCA, 1, ZERO, Y, IY, JY+L-1,
$ DESCY, 1 )
CALL PDGEMV( 'Transpose', N-K-L+1, L-1, ONE, A, I+1, JA, DESCA,
$ A, I+1, J, DESCA, 1, ZERO, WORK, 1, JW, DESCW,
$ DESCW( M_ ) )
CALL PDGEMV( 'No transpose', N, L-1, -ONE, Y, IY, JY, DESCY,
$ WORK, 1, JW, DESCW, DESCW( M_ ), ONE, Y, IY,
$ JY+L-1, DESCY, 1 )
JL = MIN( JJ+L-1, JA+NQ-1 )
CALL PDSCAL( N, TAU( JL ), Y, IY, JY+L-1, DESCY, 1 )
*
* Compute T(1:i,i)
*
IF( IPROC ) THEN
JT = ( L-1 ) * DESCA( NB_ )
CALL DSCAL( L-1, -TAU( JL ), WORK( JW ), 1 )
CALL DCOPY( L-1, WORK( JW ), 1, T( JT+1 ), 1 )
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', L-1, T,
$ DESCA( NB_ ), T( JT+1 ), 1 )
T( JT+L ) = TAU( JL )
END IF
10 CONTINUE
*
CALL PDELSET( A, K+NB+IA-1, J, DESCA, EI )
*
RETURN
*
* End of PDLAHRD
*
END
|