1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
DOUBLE PRECISION FUNCTION PDLANGE( NORM, M, N, A, IA, JA, DESCA,
$ WORK )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER IA, JA, M, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* PDLANGE returns the value of the one norm, or the Frobenius norm,
* or the infinity norm, or the element of largest absolute value of a
* distributed matrix sub( A ) = A(IA:IA+M-1, JA:JA+N-1).
*
* PDLANGE returns the value
*
* ( max(abs(A(i,j))), NORM = 'M' or 'm' with IA <= i <= IA+M-1,
* ( and JA <= j <= JA+N-1,
* (
* ( norm1( sub( A ) ), NORM = '1', 'O' or 'o'
* (
* ( normI( sub( A ) ), NORM = 'I' or 'i'
* (
* ( normF( sub( A ) ), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* NORM (global input) CHARACTER
* Specifies the value to be returned in PDLANGE as described
* above.
*
* M (global input) INTEGER
* The number of rows to be operated on i.e the number of rows
* of the distributed submatrix sub( A ). When M = 0, PDLANGE
* is set to zero. M >= 0.
*
* N (global input) INTEGER
* The number of columns to be operated on i.e the number of
* columns of the distributed submatrix sub( A ). When N = 0,
* PDLANGE is set to zero. N >= 0.
*
* A (local input) DOUBLE PRECISION pointer into the local memory
* to an array of dimension (LLD_A, LOCc(JA+N-1)) containing the
* local pieces of the distributed matrix sub( A ).
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* WORK (local workspace) DOUBLE PRECISION array dimension (LWORK)
* LWORK >= 0 if NORM = 'M' or 'm' (not referenced),
* Nq0 if NORM = '1', 'O' or 'o',
* Mp0 if NORM = 'I' or 'i',
* 0 if NORM = 'F', 'f', 'E' or 'e' (not referenced),
* where
*
* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
* Mp0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
* Nq0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
*
* INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW,
* MYCOL, NPROW and NPCOL can be determined by calling the
* subroutine BLACS_GRIDINFO.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IACOL, IAROW, ICTXT, II, ICOFF, IOFFA,
$ IROFF, J, JJ, LDA, MP, MYCOL, MYROW, NPCOL,
$ NPROW, NQ
DOUBLE PRECISION SCALE, SUM, VALUE
* ..
* .. Local Arrays ..
DOUBLE PRECISION RWORK( 2 )
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, DCOMBSSQ, DGEBR2D,
$ DGEBS2D, DGAMX2D, DGSUM2D, DLASSQ,
$ INFOG2L, PDTREECOMB
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX, NUMROC
EXTERNAL LSAME, IDAMAX, NUMROC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Get grid parameters.
*
ICTXT = DESCA( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
$ IAROW, IACOL )
IROFF = MOD( IA-1, DESCA( MB_ ) )
ICOFF = MOD( JA-1, DESCA( NB_ ) )
MP = NUMROC( M+IROFF, DESCA( MB_ ), MYROW, IAROW, NPROW )
NQ = NUMROC( N+ICOFF, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
IF( MYROW.EQ.IAROW )
$ MP = MP - IROFF
IF( MYCOL.EQ.IACOL )
$ NQ = NQ - ICOFF
LDA = DESCA( LLD_ )
*
IF( MIN( M, N ).EQ.0 ) THEN
*
VALUE = ZERO
*
ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
VALUE = ZERO
IF( NQ.GT.0 .AND. MP.GT.0 ) THEN
IOFFA = (JJ-1)*LDA
DO 20 J = JJ, JJ+NQ-1
DO 10 I = II, MP+II-1
VALUE = MAX( VALUE, ABS( A( IOFFA+I ) ) )
10 CONTINUE
IOFFA = IOFFA + LDA
20 CONTINUE
END IF
CALL DGAMX2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, I, J, -1,
$ 0, 0 )
*
ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
*
* Find norm1( sub( A ) ).
*
IF( NQ.GT.0 ) THEN
IOFFA = ( JJ - 1 ) * LDA
DO 40 J = JJ, JJ+NQ-1
SUM = ZERO
IF( MP.GT.0 ) THEN
DO 30 I = II, MP+II-1
SUM = SUM + ABS( A( IOFFA+I ) )
30 CONTINUE
END IF
IOFFA = IOFFA + LDA
WORK( J-JJ+1 ) = SUM
40 CONTINUE
END IF
*
* Find sum of global matrix columns and store on row 0 of
* process grid
*
CALL DGSUM2D( ICTXT, 'Columnwise', ' ', 1, NQ, WORK, 1,
$ 0, MYCOL )
*
* Find maximum sum of columns for 1-norm
*
IF( MYROW.EQ.0 ) THEN
IF( NQ.GT.0 ) THEN
VALUE = WORK( IDAMAX( NQ, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL DGAMX2D( ICTXT, 'Rowwise', ' ', 1, 1, VALUE, 1, I, J,
$ -1, 0, 0 )
END IF
*
ELSE IF( LSAME( NORM, 'I' ) ) THEN
*
* Find normI( sub( A ) ).
*
IF( MP.GT.0 ) THEN
IOFFA = II + ( JJ - 1 ) * LDA
DO 60 I = II, II+MP-1
SUM = ZERO
IF( NQ.GT.0 ) THEN
DO 50 J = IOFFA, IOFFA + NQ*LDA - 1, LDA
SUM = SUM + ABS( A( J ) )
50 CONTINUE
END IF
WORK( I-II+1 ) = SUM
IOFFA = IOFFA + 1
60 CONTINUE
END IF
*
* Find sum of global matrix rows and store on column 0 of
* process grid
*
CALL DGSUM2D( ICTXT, 'Rowwise', ' ', MP, 1, WORK, MAX( 1, MP ),
$ MYROW, 0 )
*
* Find maximum sum of rows for supnorm
*
IF( MYCOL.EQ.0 ) THEN
IF( MP.GT.0 ) THEN
VALUE = WORK( IDAMAX( MP, WORK, 1 ) )
ELSE
VALUE = ZERO
END IF
CALL DGAMX2D( ICTXT, 'Columnwise', ' ', 1, 1, VALUE, 1, I,
$ J, -1, 0, 0 )
END IF
*
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF( sub( A ) ).
*
SCALE = ZERO
SUM = ONE
IOFFA = II + ( JJ - 1 ) * LDA
IF( NQ.GT.0 ) THEN
DO 70 J = IOFFA, IOFFA + NQ*LDA - 1, LDA
CALL DLASSQ( MP, A( J ), 1, SCALE, SUM )
70 CONTINUE
END IF
*
* Perform the global scaled sum
*
RWORK( 1 ) = SCALE
RWORK( 2 ) = SUM
CALL PDTREECOMB( ICTXT, 'All', 2, RWORK, 0, 0, DCOMBSSQ )
VALUE = RWORK( 1 ) * SQRT( RWORK( 2 ) )
*
END IF
*
IF( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN
CALL DGEBS2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1 )
ELSE
CALL DGEBR2D( ICTXT, 'All', ' ', 1, 1, VALUE, 1, 0, 0 )
END IF
*
PDLANGE = VALUE
*
RETURN
*
* End of PDLANGE
*
END
|