1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
SUBROUTINE PDLAUUM( UPLO, N, A, IA, JA, DESCA )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER IA, JA, N
* ..
* .. Array Arguments ..
INTEGER DESCA( * )
DOUBLE PRECISION A( * )
* ..
*
* Purpose
* =======
*
* PDLAUUM computes the product U * U' or L' * L, where the triangular
* factor U or L is stored in the upper or lower triangular part of
* the distributed matrix sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
*
* If UPLO = 'U' or 'u' then the upper triangle of the result is stored,
* overwriting the factor U in sub( A ).
* If UPLO = 'L' or 'l' then the lower triangle of the result is stored,
* overwriting the factor L in sub( A ).
*
* This is the blocked form of the algorithm, calling Level 3 PBLAS.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* UPLO (global input) CHARACTER*1
* Specifies whether the triangular factor stored in the
* distributed matrix sub( A ) is upper or lower triangular:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (global input) INTEGER
* The number of rows and columns to be operated on, i.e. the
* order of the triangular factor U or L. N >= 0.
*
* A (local input/local output) DOUBLE PRECISION pointer into the
* local memory to an array of dimension (LLD_A, LOCc(JA+N-1)).
* On entry, the local pieces of the triangular factor L or U.
* On exit, if UPLO = 'U', the upper triangle of the distributed
* matrix sub( A ) is overwritten with the upper triangle of the
* product U * U'; if UPLO = 'L', the lower triangle of sub( A )
* is overwritten with the lower triangle of the product L' * L.
*
* IA (global input) INTEGER
* The row index in the global array A indicating the first
* row of sub( A ).
*
* JA (global input) INTEGER
* The column index in the global array A indicating the
* first column of sub( A ).
*
* DESCA (global and local input) INTEGER array of dimension DLEN_.
* The array descriptor for the distributed matrix A.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, JB, JN
* ..
* .. External Subroutines ..
EXTERNAL PDGEMM, PDLAUU2, PDTRMM, PDSYRK
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICEIL
EXTERNAL ICEIL, LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
JN = MIN( ICEIL( JA, DESCA( NB_ ) ) * DESCA( NB_ ), JA+N-1 )
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Compute the product U * U'.
*
* Handle first block separately
*
JB = JN-JA+1
CALL PDLAUU2( 'Upper', JB, A, IA, JA, DESCA )
IF( JB.LE.N-1 ) THEN
CALL PDSYRK( 'Upper', 'No transpose', JB, N-JB, ONE, A, IA,
$ JA+JB, DESCA, ONE, A, IA, JA, DESCA )
END IF
*
* Loop over remaining block of columns
*
DO 10 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( N-J+JA, DESCA( NB_ ) )
I = IA + J - JA
CALL PDTRMM( 'Right', 'Upper', 'Transpose', 'Non-unit',
$ J-JA, JB, ONE, A, I, J, DESCA, A, IA, J,
$ DESCA )
CALL PDLAUU2( 'Upper', JB, A, I, J, DESCA )
IF( J+JB.LE.JA+N-1 ) THEN
CALL PDGEMM( 'No transpose', 'Transpose', J-JA, JB,
$ N-J-JB+JA, ONE, A, IA, J+JB, DESCA, A, I,
$ J+JB, DESCA, ONE, A, IA, J, DESCA )
CALL PDSYRK( 'Upper', 'No transpose', JB, N-J-JB+JA, ONE,
$ A, I, J+JB, DESCA, ONE, A, I, J, DESCA )
END IF
10 CONTINUE
ELSE
*
* Compute the product L' * L.
*
* Handle first block separately
*
JB = JN-JA+1
CALL PDLAUU2( 'Lower', JB, A, IA, JA, DESCA )
IF( JB.LE.N-1 ) THEN
CALL PDSYRK( 'Lower', 'Transpose', JB, N-JB, ONE, A, IA+JB,
$ JA, DESCA, ONE, A, IA, JA, DESCA )
END IF
*
* Loop over remaining block of columns
*
DO 20 J = JN+1, JA+N-1, DESCA( NB_ )
JB = MIN( N-J+JA, DESCA( NB_ ) )
I = IA + J - JA
CALL PDTRMM( 'Left', 'Lower', 'Transpose', 'Non-unit', JB,
$ J-JA, ONE, A, I, J, DESCA, A, I, JA, DESCA )
CALL PDLAUU2( 'Lower', JB, A, I, J, DESCA )
IF( J+JB.LE.JA+N-1 ) THEN
CALL PDGEMM( 'Transpose', 'No transpose', JB, J-JA,
$ N-J-JB+JA, ONE, A, I+JB, J, DESCA, A, I+JB,
$ JA, DESCA, ONE, A, I, JA, DESCA )
CALL PDSYRK( 'Lower', 'Transpose', JB, N-J-JB+JA, ONE,
$ A, I+JB, J, DESCA, ONE, A, I, J, DESCA )
END IF
20 CONTINUE
END IF
*
RETURN
*
* End of PDLAUUM
*
END
|