File: pdzsum1.f

package info (click to toggle)
scalapack 1.7-5
  • links: PTS
  • area: main
  • in suites: woody
  • size: 33,956 kB
  • ctags: 30,434
  • sloc: fortran: 309,685; ansic: 64,027; makefile: 1,836; sh: 4
file content (224 lines) | stat: -rw-r--r-- 8,772 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
      SUBROUTINE PDZSUM1( N, ASUM, X, IX, JX, DESCX, INCX )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER        IX, INCX, JX, N
      DOUBLE PRECISION   ASUM
*     ..
*     .. Array Arguments ..
      INTEGER       DESCX( * )
      COMPLEX*16         X( * )
*     ..
*
*  Purpose
*  =======
*
*  PDZSUM1 returns the sum of absolute values of a complex
*  distributed vector sub( X ) in ASUM,
*
*  where sub( X ) denotes X(IX:IX+N-1,JX:JX), if INCX = 1,
*                         X(IX:IX,JX:JX+N-1), if INCX = M_X.
*
*  Based on PDZASUM from the Level 1 PBLAS. The change is
*  to use the 'genuine' absolute value.
*
*  The serial version of this routine was originally contributed by
*  Nick Higham for use with ZLACON.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Because vectors may be viewed as a subclass of matrices, a
*  distributed vector is considered to be a distributed matrix.
*
*  When the result of a vector-oriented PBLAS call is a scalar, it will
*  be made available only within the scope which owns the vector(s)
*  being operated on.  Let X be a generic term for the input vector(s).
*  Then, the processes which receive the answer will be (note that if
*  an operation involves more than one vector, the processes which re-
*  ceive the result will be the union of the following calculation for
*  each vector):
*
*  If N = 1, M_X = 1 and INCX = 1, then one can't determine if a process
*  row or process column owns the vector operand, therefore only the
*  process of coordinate {RSRC_X, CSRC_X} receives the result;
*
*  If INCX = M_X, then sub( X ) is a vector distributed over a process
*  row. Each process part of this row receives the result;
*
*  If INCX = 1, then sub( X ) is a vector distributed over a process
*  column. Each process part of this column receives the result;
*
*  Parameters
*  ==========
*
*  N       (global input) pointer to INTEGER
*          The number of components of the distributed vector sub( X ).
*          N >= 0.
*
*  ASUM    (local output) pointer to DOUBLE PRECISION
*          The sum of absolute values of the distributed vector sub( X )
*          only in its scope.
*
*  X       (local input) COMPLEX*16 array containing the local
*          pieces of a distributed matrix of dimension of at least
*              ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
*          This array contains the entries of the distributed vector
*          sub( X ).
*
*  IX      (global input) pointer to INTEGER
*          The global row index of the submatrix of the distributed
*          matrix X to operate on.
*
*  JX      (global input) pointer to INTEGER
*          The global column index of the submatrix of the distributed
*          matrix X to operate on.
*
*  DESCX   (global and local input) INTEGER array of dimension 8.
*          The array descriptor of the distributed matrix X.
*
*  INCX    (global input) pointer to INTEGER
*          The global increment for the elements of X. Only two values
*          of INCX are supported in this version, namely 1 and M_X.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          CCTOP, RCTOP
      INTEGER            ICOFF, ICTXT, IIX, IROFF, IXCOL, IXROW, JJX,
     $                   LDX, MYCOL, MYROW, NP, NPCOL, NPROW, NQ
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DGSUM2D, INFOG2L, PB_TOPGET
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      DOUBLE PRECISION   DZSUM1
      EXTERNAL           DZSUM1, NUMROC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MOD
*     ..
*     .. Executable Statements ..
*
      ICTXT = DESCX( CTXT_ )
      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
*     Quick return if possible
*
      ASUM = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      LDX = DESCX( LLD_ )
      CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX, JJX,
     $              IXROW, IXCOL )
*
      IF( INCX.EQ.1 .AND. DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
         IF( MYROW.EQ.IXROW .AND. MYCOL.EQ.IXCOL ) THEN
            ASUM = ABS( X( IIX+(JJX-1)*LDX ) )
         END IF
         RETURN
      END IF
*
      IF( INCX.EQ.DESCX( M_ ) ) THEN
*
*        X is distributed over a process row
*
         IF( MYROW.EQ.IXROW ) THEN
            CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', RCTOP )
            ICOFF = MOD( JX-1, DESCX( NB_ ) )
            NQ = NUMROC( N+ICOFF, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
            IF( MYCOL.EQ.IXCOL )
     $         NQ = NQ-ICOFF
            ASUM = DZSUM1( NQ, X( IIX+(JJX-1)*LDX ), LDX )
            CALL DGSUM2D( ICTXT, 'Rowwise', RCTOP, 1, 1, ASUM, 1,
     $                    -1, MYCOL )
         END IF
*
      ELSE
*
*        X is distributed over a process column
*
         IF( MYCOL.EQ.IXCOL ) THEN
            CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', CCTOP )
            IROFF = MOD( IX-1, DESCX( MB_ ) )
            NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IXROW, NPROW )
            IF( MYROW.EQ.IXROW )
     $         NP = NP-IROFF
            ASUM = DZSUM1( NP, X( IIX+(JJX-1)*LDX ), 1 )
            CALL DGSUM2D( ICTXT, 'Columnwise', CCTOP, 1, 1, ASUM, 1,
     $                    -1, MYCOL )
         END IF
*
      END IF
*
      RETURN
*
*     End of PDZSUM1
*
      END