1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
SUBROUTINE PSCSUM1( N, ASUM, X, IX, JX, DESCX, INCX )
*
* -- ScaLAPACK auxiliary routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER IX, INCX, JX, N
REAL ASUM
* ..
* .. Array Arguments ..
INTEGER DESCX( * )
COMPLEX X( * )
* ..
*
* Purpose
* =======
*
* PSCSUM1 returns the sum of absolute values of a complex
* distributed vector sub( X ) in ASUM,
*
* where sub( X ) denotes X(IX:IX+N-1,JX:JX), if INCX = 1,
* X(IX:IX,JX:JX+N-1), if INCX = M_X.
*
* Based on PSCASUM from the Level 1 PBLAS. The change is
* to use the 'genuine' absolute value.
*
* The serial version of this routine was originally contributed by
* Nick Higham for use with CLACON.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Because vectors may be viewed as a subclass of matrices, a
* distributed vector is considered to be a distributed matrix.
*
* When the result of a vector-oriented PBLAS call is a scalar, it will
* be made available only within the scope which owns the vector(s)
* being operated on. Let X be a generic term for the input vector(s).
* Then, the processes which receive the answer will be (note that if
* an operation involves more than one vector, the processes which re-
* ceive the result will be the union of the following calculation for
* each vector):
*
* If N = 1, M_X = 1 and INCX = 1, then one can't determine if a process
* row or process column owns the vector operand, therefore only the
* process of coordinate {RSRC_X, CSRC_X} receives the result;
*
* If INCX = M_X, then sub( X ) is a vector distributed over a process
* row. Each process part of this row receives the result;
*
* If INCX = 1, then sub( X ) is a vector distributed over a process
* column. Each process part of this column receives the result;
*
* Parameters
* ==========
*
* N (global input) pointer to INTEGER
* The number of components of the distributed vector sub( X ).
* N >= 0.
*
* ASUM (local output) pointer to REAL
* The sum of absolute values of the distributed vector sub( X )
* only in its scope.
*
* X (local input) COMPLEX array containing the local
* pieces of a distributed matrix of dimension of at least
* ( (JX-1)*M_X + IX + ( N - 1 )*abs( INCX ) )
* This array contains the entries of the distributed vector
* sub( X ).
*
* IX (global input) pointer to INTEGER
* The global row index of the submatrix of the distributed
* matrix X to operate on.
*
* JX (global input) pointer to INTEGER
* The global column index of the submatrix of the distributed
* matrix X to operate on.
*
* DESCX (global and local input) INTEGER array of dimension 8.
* The array descriptor of the distributed matrix X.
*
* INCX (global input) pointer to INTEGER
* The global increment for the elements of X. Only two values
* of INCX are supported in this version, namely 1 and M_X.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
CHARACTER CCTOP, RCTOP
INTEGER ICOFF, ICTXT, IIX, IROFF, IXCOL, IXROW, JJX,
$ LDX, MYCOL, MYROW, NP, NPCOL, NPROW, NQ
* ..
* .. External Subroutines ..
EXTERNAL BLACS_GRIDINFO, INFOG2L, SGSUM2D, PB_TOPGET
* ..
* .. External Functions ..
INTEGER NUMROC
REAL SCSUM1
EXTERNAL NUMROC, SCSUM1
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MOD
* ..
* .. Executable Statements ..
*
ICTXT = DESCX( CTXT_ )
CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
*
* Quick return if possible
*
ASUM = ZERO
IF( N.LE.0 )
$ RETURN
*
LDX = DESCX( LLD_ )
CALL INFOG2L( IX, JX, DESCX, NPROW, NPCOL, MYROW, MYCOL, IIX, JJX,
$ IXROW, IXCOL )
*
IF( INCX.EQ.1 .AND. DESCX( M_ ).EQ.1 .AND. N.EQ.1 ) THEN
IF( MYROW.EQ.IXROW .AND. MYCOL.EQ.IXCOL ) THEN
ASUM = ABS( X( IIX+(JJX-1)*LDX ) )
END IF
RETURN
END IF
*
IF( INCX.EQ.DESCX( M_ ) ) THEN
*
* X is distributed over a process row
*
IF( MYROW.EQ.IXROW ) THEN
CALL PB_TOPGET( ICTXT, 'Combine', 'Rowwise', RCTOP )
ICOFF = MOD( JX-1, DESCX( NB_ ) )
NQ = NUMROC( N+ICOFF, DESCX( NB_ ), MYCOL, IXCOL, NPCOL )
IF( MYCOL.EQ.IXCOL )
$ NQ = NQ-ICOFF
ASUM = SCSUM1( NQ, X( IIX+(JJX-1)*LDX ), LDX )
CALL SGSUM2D( ICTXT, 'Rowwise', RCTOP, 1, 1, ASUM, 1,
$ -1, MYCOL )
END IF
*
ELSE
*
* X is distributed over a process column
*
IF( MYCOL.EQ.IXCOL ) THEN
CALL PB_TOPGET( ICTXT, 'Combine', 'Columnwise', CCTOP )
IROFF = MOD( IX-1, DESCX( MB_ ) )
NP = NUMROC( N+IROFF, DESCX( MB_ ), MYROW, IXROW, NPROW )
IF( MYROW.EQ.IXROW )
$ NP = NP-IROFF
ASUM = SCSUM1( NP, X( IIX+(JJX-1)*LDX ), 1 )
CALL SGSUM2D( ICTXT, 'Columnwise', CCTOP, 1, 1, ASUM, 1,
$ -1, MYCOL )
END IF
*
END IF
*
RETURN
*
* End of PSCSUM1
*
END
|