File: pslaed1.f

package info (click to toggle)
scalapack 1.7-5
  • links: PTS
  • area: main
  • in suites: woody
  • size: 33,956 kB
  • ctags: 30,434
  • sloc: fortran: 309,685; ansic: 64,027; makefile: 1,836; sh: 4
file content (271 lines) | stat: -rw-r--r-- 9,514 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
      SUBROUTINE PSLAED1( N, N1, D, ID, Q, IQ, JQ, DESCQ, RHO, WORK,
     $                    IWORK, INFO )
*
*  -- ScaLAPACK auxiliary routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     December 31, 1998
*
*     .. Scalar Arguments ..
      INTEGER            ID, INFO, IQ, JQ, N, N1
      REAL               RHO
*     ..
*     .. Array Arguments ..
      INTEGER            DESCQ( * ), IWORK( * )
      REAL               D( * ), Q( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  PSLAED1 computes the updated eigensystem of a diagonal
*  matrix after modification by a rank-one symmetric matrix,
*  in parallel.
*
*    T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out)
*
*     where Z = Q'u, u is a vector of length N with ones in the
*     N1 and N1 + 1 th elements and zeros elsewhere.
*
*     The eigenvectors of the original matrix are stored in Q, and the
*     eigenvalues are in D.  The algorithm consists of three stages:
*
*        The first stage consists of deflating the size of the problem
*        when there are multiple eigenvalues or if there is a zero in
*        the Z vector.  For each such occurence the dimension of the
*        secular equation problem is reduced by one.  This stage is
*        performed by the routine PSLAED2.
*
*        The second stage consists of calculating the updated
*        eigenvalues. This is done by finding the roots of the secular
*        equation via the routine SLAED4 (as called by PSLAED3).
*        This routine also calculates the eigenvectors of the current
*        problem.
*
*        The final stage consists of computing the updated eigenvectors
*        directly using the updated eigenvalues.  The eigenvectors for
*        the current problem are multiplied with the eigenvectors from
*        the overall problem.
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*
*  N1      (input) INTEGER
*          The location of the last eigenvalue in the leading
*          sub-matrix.
*          min(1,N) <= N1 <= N.
*
*  D       (global input/output) REAL array, dimension (N)
*          On entry,the eigenvalues of the rank-1-perturbed matrix.
*          On exit, the eigenvalues of the repaired matrix.
*
*  ID      (global input) INTEGER
*          Q's global row/col index, which points to the beginning
*          of the submatrix which is to be operated on.
*
*  Q       (local output) REAL array,
*          global dimension (N, N),
*          local dimension ( LLD_Q, LOCc(JQ+N-1))
*          Q  contains the orthonormal eigenvectors of the symmetric
*          tridiagonal matrix.
*
*  IQ      (global input) INTEGER
*          Q's global row index, which points to the beginning of the
*          submatrix which is to be operated on.
*
*  JQ      (global input) INTEGER
*          Q's global column index, which points to the beginning of
*          the submatrix which is to be operated on.
*
*  DESCQ   (global and local input) INTEGER array of dimension DLEN_.
*          The array descriptor for the distributed matrix Z.
*
*  RHO    (input) REAL
*         The subdiagonal entry used to create the rank-1 modification.
*
*  WORK    (local workspace/output) REAL array,
*          dimension 6*N + 2*NP*NQ
*
*  IWORK   (local workspace/output) INTEGER array,
*          dimension 7*N + 8*NPCOL + 2
*
*  INFO    (global output) INTEGER
*          = 0:  successful exit
*          < 0:  If the i-th argument is an array and the j-entry had
*                an illegal value, then INFO = -(i*100+j), if the i-th
*                argument is a scalar and had an illegal value, then
*                INFO = -i.
*          > 0:  The algorithm failed to compute the ith eigenvalue.
*
*  =====================================================================
*
*     .. Parameters ..
*
      INTEGER            BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
     $                   MB_, NB_, RSRC_, CSRC_, LLD_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                   CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                   RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COL, COLTYP, IBUF, ICTOT, ICTXT, IDLMDA, IIQ,
     $                   INDCOL, INDROW, INDX, INDXC, INDXP, INDXR, INQ,
     $                   IPQ, IPQ2, IPSM, IPU, IPWORK, IQ1, IQ2, IQCOL,
     $                   IQQ, IQROW, IW, IZ, J, JC, JJ2C, JJC, JJQ, JNQ,
     $                   K, LDQ, LDQ2, LDU, MYCOL, MYROW, NB, NN, NN1,
     $                   NN2, NP, NPCOL, NPROW, NQ
*     ..
*     .. Local Arrays ..
      INTEGER            DESCQ2( DLEN_ ), DESCU( DLEN_ )
*     ..
*     .. External Functions ..
      INTEGER            NUMROC
      EXTERNAL           NUMROC
*     ..
*     .. External Subroutines ..
      EXTERNAL           BLACS_GRIDINFO, DESCINIT, INFOG1L, INFOG2L,
     $                   PSGEMM, PSLAED2, PSLAED3, PSLAEDZ, PSLASET,
     $                   PXERBLA, SCOPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*       This is just to keep ftnchek and toolpack/1 happy
      IF( BLOCK_CYCLIC_2D*CSRC_*CTXT_*DLEN_*DTYPE_*LLD_*MB_*M_*NB_*N_*
     $    RSRC_.LT.0 )RETURN
*
*
*     Test the input parameters.
*
      CALL BLACS_GRIDINFO( DESCQ( CTXT_ ), NPROW, NPCOL, MYROW, MYCOL )
      INFO = 0
      IF( NPROW.EQ.-1 ) THEN
         INFO = -( 600+CTXT_ )
      ELSE IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ID.GT.DESCQ( N_ ) ) THEN
         INFO = -4
      ELSE IF( N1.GE.N ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL PXERBLA( DESCQ( CTXT_ ), 'PSLAED1', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     The following values are  integer pointers which indicate
*     the portion of the workspace used by a particular array
*     in PSLAED2 and PSLAED3.
*
      ICTXT = DESCQ( CTXT_ )
      NB = DESCQ( NB_ )
      LDQ = DESCQ( LLD_ )
*
      CALL INFOG2L( IQ-1+ID, JQ-1+ID, DESCQ, NPROW, NPCOL, MYROW, MYCOL,
     $              IIQ, JJQ, IQROW, IQCOL )
*
      NP = NUMROC( N, DESCQ( MB_ ), MYROW, IQROW, NPROW )
      NQ = NUMROC( N, DESCQ( NB_ ), MYCOL, IQCOL, NPCOL )
*
      LDQ2 = MAX( NP, 1 )
      LDU = LDQ2
*
      IZ = 1
      IDLMDA = IZ + N
      IW = IDLMDA + N
      IPQ2 = IW + N
      IPU = IPQ2 + LDQ2*NQ
      IBUF = IPU + LDU*NQ
*     (IBUF est de taille 3*N au maximum)
*
      ICTOT = 1
      IPSM = ICTOT + NPCOL*4
      INDX = IPSM + NPCOL*4
      INDXC = INDX + N
      INDXP = INDXC + N
      INDCOL = INDXP + N
      COLTYP = INDCOL + N
      INDROW = COLTYP + N
      INDXR = INDROW + N
*
      CALL DESCINIT( DESCQ2, N, N, NB, NB, IQROW, IQCOL, ICTXT, LDQ2,
     $               INFO )
      CALL DESCINIT( DESCU, N, N, NB, NB, IQROW, IQCOL, ICTXT, LDU,
     $               INFO )
*
*     Form the z-vector which consists of the last row of Q_1 and the
*     first row of Q_2.
*
      IPWORK = IDLMDA
      CALL PSLAEDZ( N, N1, ID, Q, IQ, JQ, LDQ, DESCQ, WORK( IZ ),
     $              WORK( IPWORK ) )
*
*     Deflate eigenvalues.
*
      IPQ = IIQ + ( JJQ-1 )*LDQ
      CALL PSLAED2( ICTXT, K, N, N1, NB, D, IQROW, IQCOL, Q( IPQ ), LDQ,
     $              RHO, WORK( IZ ), WORK( IW ), WORK( IDLMDA ),
     $              WORK( IPQ2 ), LDQ2, WORK( IBUF ), IWORK( ICTOT ),
     $              IWORK( IPSM ), NPCOL, IWORK( INDX ), IWORK( INDXC ),
     $              IWORK( INDXP ), IWORK( INDCOL ), IWORK( COLTYP ),
     $              NN, NN1, NN2, IQ1, IQ2 )
*
*     Solve Secular Equation.
*
      IF( K.NE.0 ) THEN
         CALL PSLASET( 'A', N, N, ZERO, ONE, WORK( IPU ), 1, 1, DESCU )
         CALL PSLAED3( ICTXT, K, N, NB, D, IQROW, IQCOL, RHO,
     $                 WORK( IDLMDA ), WORK( IW ), WORK( IZ ),
     $                 WORK( IPU ), LDQ2, WORK( IBUF ), IWORK( INDX ),
     $                 IWORK( INDCOL ), IWORK( INDROW ), IWORK( INDXR ),
     $                 IWORK( INDXC ), IWORK( ICTOT ), NPCOL, INFO )
*
*     Compute the updated eigenvectors.
*
         IQQ = MIN( IQ1, IQ2 )
         IF( NN1.GT.0 ) THEN
            INQ = IQ - 1 + ID
            JNQ = JQ - 1 + ID + IQQ - 1
            CALL PSGEMM( 'N', 'N', N1, NN, NN1, ONE, WORK( IPQ2 ), 1,
     $                   IQ1, DESCQ2, WORK( IPU ), IQ1, IQQ, DESCU,
     $                   ZERO, Q, INQ, JNQ, DESCQ )
         END IF
         IF( NN2.GT.0 ) THEN
            INQ = IQ - 1 + ID + N1
            JNQ = JQ - 1 + ID + IQQ - 1
            CALL PSGEMM( 'N', 'N', N-N1, NN, NN2, ONE, WORK( IPQ2 ),
     $                   N1+1, IQ2, DESCQ2, WORK( IPU ), IQ2, IQQ,
     $                   DESCU, ZERO, Q, INQ, JNQ, DESCQ )
         END IF
*
         DO 10 J = K + 1, N
            JC = IWORK( INDX+J-1 )
            CALL INFOG1L( JQ-1+JC, NB, NPCOL, MYCOL, IQCOL, JJC, COL )
            CALL INFOG1L( JC, NB, NPCOL, MYCOL, IQCOL, JJ2C, COL )
            IF( MYCOL.EQ.COL ) THEN
               IQ2 = IPQ2 + ( JJ2C-1 )*LDQ2
               INQ = IPQ + ( JJC-1 )*LDQ
               CALL SCOPY( NP, WORK( IQ2 ), 1, Q( INQ ), 1 )
            END IF
   10    CONTINUE
      END IF
*
   20 CONTINUE
      RETURN
*
*     End of PSLAED1
*
      END