1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
SUBROUTINE INFOG2L( GRINDX, GCINDX, DESC, NPROW, NPCOL, MYROW,
$ MYCOL, LRINDX, LCINDX, RSRC, CSRC )
*
* -- ScaLAPACK tools routine (version 1.7) --
* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
* and University of California, Berkeley.
* May 1, 1997
*
* .. Scalar Arguments ..
INTEGER CSRC, GCINDX, GRINDX, LRINDX, LCINDX, MYCOL,
$ MYROW, NPCOL, NPROW, RSRC
* ..
* .. Array Arguments ..
INTEGER DESC( * )
* ..
*
* Purpose
* =======
*
* INFOG2L computes the starting local indexes LRINDX, LCINDX corres-
* ponding to the distributed submatrix starting globally at the entry
* pointed by GRINDX, GCINDX. This routine returns the coordinates in
* the grid of the process owning the matrix entry of global indexes
* GRINDX, GCINDX, namely RSRC and CSRC.
*
* Notes
* =====
*
* Each global data object is described by an associated description
* vector. This vector stores the information required to establish
* the mapping between an object element and its corresponding process
* and memory location.
*
* Let A be a generic term for any 2D block cyclicly distributed array.
* Such a global array has an associated description vector DESCA.
* In the following comments, the character _ should be read as
* "of the global array".
*
* NOTATION STORED IN EXPLANATION
* --------------- -------------- --------------------------------------
* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
* DTYPE_A = 1.
* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
* the BLACS process grid A is distribu-
* ted over. The context itself is glo-
* bal, but the handle (the integer
* value) may vary.
* M_A (global) DESCA( M_ ) The number of rows in the global
* array A.
* N_A (global) DESCA( N_ ) The number of columns in the global
* array A.
* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
* the rows of the array.
* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
* the columns of the array.
* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
* row of the array A is distributed.
* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
* first column of the array A is
* distributed.
* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
* array. LLD_A >= MAX(1,LOCr(M_A)).
*
* Let K be the number of rows or columns of a distributed matrix,
* and assume that its process grid has dimension p x q.
* LOCr( K ) denotes the number of elements of K that a process
* would receive if K were distributed over the p processes of its
* process column.
* Similarly, LOCc( K ) denotes the number of elements of K that a
* process would receive if K were distributed over the q processes of
* its process row.
* The values of LOCr() and LOCc() may be determined via a call to the
* ScaLAPACK tool function, NUMROC:
* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
* An upper bound for these quantities may be computed by:
* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
* Arguments
* =========
*
* GRINDX (global input) INTEGER
* The global row starting index of the submatrix.
*
* GCINDX (global input) INTEGER
* The global column starting index of the submatrix.
*
* DESC (input) INTEGER array of dimension DLEN_.
* The array descriptor for the underlying distributed matrix.
*
* NPROW (global input) INTEGER
* The total number of process rows over which the distributed
* matrix is distributed.
*
* NPCOL (global input) INTEGER
* The total number of process columns over which the
* distributed matrix is distributed.
*
* MYROW (local input) INTEGER
* The row coordinate of the process calling this routine.
*
* MYCOL (local input) INTEGER
* The column coordinate of the process calling this routine.
*
* LRINDX (local output) INTEGER
* The local rows starting index of the submatrix.
*
* LCINDX (local output) INTEGER
* The local columns starting index of the submatrix.
*
* RSRC (global output) INTEGER
* The row coordinate of the process that possesses the first
* row and column of the submatrix.
*
* CSRC (global output) INTEGER
* The column coordinate of the process that possesses the
* first row and column of the submatrix.
*
* =====================================================================
*
* .. Parameters ..
INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
$ LLD_, MB_, M_, NB_, N_, RSRC_
PARAMETER ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
$ CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
$ RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
* ..
* .. Local Scalars ..
INTEGER CBLK, GCCPY, GRCPY, RBLK
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD
* ..
* .. Executable Statements ..
*
GRCPY = GRINDX-1
GCCPY = GCINDX-1
*
RBLK = GRCPY / DESC(MB_)
CBLK = GCCPY / DESC(NB_)
RSRC = MOD( RBLK + DESC(RSRC_), NPROW )
CSRC = MOD( CBLK + DESC(CSRC_), NPCOL )
*
LRINDX = ( RBLK / NPROW + 1 ) * DESC(MB_) + 1
LCINDX = ( CBLK / NPCOL + 1 ) * DESC(NB_) + 1
*
IF( MOD( MYROW+NPROW-DESC(RSRC_), NPROW ) .GE.
$ MOD( RBLK, NPROW ) ) THEN
IF( MYROW.EQ.RSRC )
$ LRINDX = LRINDX + MOD( GRCPY, DESC(MB_) )
LRINDX = LRINDX - DESC(MB_)
END IF
*
IF( MOD( MYCOL+NPCOL-DESC(CSRC_), NPCOL ) .GE.
$ MOD( CBLK, NPCOL ) ) THEN
IF( MYCOL.EQ.CSRC )
$ LCINDX = LCINDX + MOD( GCCPY, DESC(NB_) )
LCINDX = LCINDX - DESC(NB_)
END IF
*
RETURN
*
* End of INFOG2L
*
END
|