File: infog2l.f

package info (click to toggle)
scalapack 1.7-5
  • links: PTS
  • area: main
  • in suites: woody
  • size: 33,956 kB
  • ctags: 30,434
  • sloc: fortran: 309,685; ansic: 64,027; makefile: 1,836; sh: 4
file content (166 lines) | stat: -rw-r--r-- 6,561 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
      SUBROUTINE INFOG2L( GRINDX, GCINDX, DESC, NPROW, NPCOL, MYROW,
     $                    MYCOL, LRINDX, LCINDX, RSRC, CSRC )
*
*  -- ScaLAPACK tools routine (version 1.7) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     May 1, 1997
*
*     .. Scalar Arguments ..
      INTEGER            CSRC, GCINDX, GRINDX, LRINDX, LCINDX, MYCOL,
     $                   MYROW, NPCOL, NPROW, RSRC
*     ..
*     .. Array Arguments ..
      INTEGER            DESC( * )
*     ..
*
*  Purpose
*  =======
*
*  INFOG2L computes the starting local indexes LRINDX, LCINDX corres-
*  ponding to the distributed submatrix starting globally at the entry
*  pointed by GRINDX, GCINDX. This routine returns the coordinates in
*  the grid of the process owning the matrix entry of global indexes
*  GRINDX, GCINDX, namely RSRC and CSRC.
*
*  Notes
*  =====
*
*  Each global data object is described by an associated description
*  vector.  This vector stores the information required to establish
*  the mapping between an object element and its corresponding process
*  and memory location.
*
*  Let A be a generic term for any 2D block cyclicly distributed array.
*  Such a global array has an associated description vector DESCA.
*  In the following comments, the character _ should be read as
*  "of the global array".
*
*  NOTATION        STORED IN      EXPLANATION
*  --------------- -------------- --------------------------------------
*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
*                                 DTYPE_A = 1.
*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
*                                 the BLACS process grid A is distribu-
*                                 ted over. The context itself is glo-
*                                 bal, but the handle (the integer
*                                 value) may vary.
*  M_A    (global) DESCA( M_ )    The number of rows in the global
*                                 array A.
*  N_A    (global) DESCA( N_ )    The number of columns in the global
*                                 array A.
*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
*                                 the rows of the array.
*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
*                                 the columns of the array.
*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
*                                 row of the array A is distributed.
*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
*                                 first column of the array A is
*                                 distributed.
*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
*
*  Let K be the number of rows or columns of a distributed matrix,
*  and assume that its process grid has dimension p x q.
*  LOCr( K ) denotes the number of elements of K that a process
*  would receive if K were distributed over the p processes of its
*  process column.
*  Similarly, LOCc( K ) denotes the number of elements of K that a
*  process would receive if K were distributed over the q processes of
*  its process row.
*  The values of LOCr() and LOCc() may be determined via a call to the
*  ScaLAPACK tool function, NUMROC:
*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
*  An upper bound for these quantities may be computed by:
*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
*
*  Arguments
*  =========
*
*  GRINDX    (global input) INTEGER
*            The global row starting index of the submatrix.
*
*  GCINDX    (global input) INTEGER
*            The global column starting index of the submatrix.
*
*  DESC      (input) INTEGER array of dimension DLEN_.
*            The array descriptor for the underlying distributed matrix.
*
*  NPROW     (global input) INTEGER
*            The total number of process rows over which the distributed
*            matrix is distributed.
*
*  NPCOL     (global input) INTEGER
*            The total number of process columns over which the
*            distributed matrix is distributed.
*
*  MYROW     (local input) INTEGER
*            The row coordinate of the process calling this routine.
*
*  MYCOL     (local input) INTEGER
*            The column coordinate of the process calling this routine.
*
*  LRINDX    (local output) INTEGER
*            The local rows starting index of the submatrix.
*
*  LCINDX    (local output) INTEGER
*            The local columns starting index of the submatrix.
*
*  RSRC      (global output) INTEGER
*            The row coordinate of the process that possesses the first
*            row and column of the submatrix.
*
*  CSRC      (global output) INTEGER
*            The column coordinate of the process that possesses the
*            first row and column of the submatrix.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
     $                   LLD_, MB_, M_, NB_, N_, RSRC_
      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
*     ..
*     .. Local Scalars ..
      INTEGER            CBLK, GCCPY, GRCPY, RBLK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
      GRCPY = GRINDX-1
      GCCPY = GCINDX-1
*
      RBLK = GRCPY / DESC(MB_)
      CBLK = GCCPY / DESC(NB_)
      RSRC = MOD( RBLK + DESC(RSRC_), NPROW )
      CSRC = MOD( CBLK + DESC(CSRC_), NPCOL )
*
      LRINDX = ( RBLK / NPROW + 1 ) * DESC(MB_) + 1
      LCINDX = ( CBLK / NPCOL + 1 ) * DESC(NB_) + 1
*
      IF( MOD( MYROW+NPROW-DESC(RSRC_), NPROW ) .GE.
     $    MOD( RBLK, NPROW ) ) THEN
         IF( MYROW.EQ.RSRC )
     $      LRINDX = LRINDX + MOD( GRCPY, DESC(MB_) )
         LRINDX = LRINDX - DESC(MB_)
      END IF
*
      IF( MOD( MYCOL+NPCOL-DESC(CSRC_), NPCOL ) .GE.
     $    MOD( CBLK, NPCOL ) ) THEN
         IF( MYCOL.EQ.CSRC )
     $      LCINDX = LCINDX + MOD( GCCPY, DESC(NB_) )
         LCINDX = LCINDX - DESC(NB_)
      END IF
*
      RETURN
*
*     End of INFOG2L
*
      END