| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 
 | /* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pcherk_( F_CHAR_T UPLO, F_CHAR_T TRANS, int * N, int * K,
              float * ALPHA,
              float * A, int * IA, int * JA, int * DESCA,
              float * BETA,
              float * C, int * IC, int * JC, int * DESCC )
#else
void pcherk_( UPLO, TRANS, N, K, ALPHA, A, IA, JA, DESCA, BETA,
              C, IC, JC, DESCC )
/*
*  .. Scalar Arguments ..
*/
   F_CHAR_T       TRANS, UPLO;
   int            * IA, * IC, * JA, * JC, * K, * N;
   float          * ALPHA, * BETA;
/*
*  .. Array Arguments ..
*/
   int            * DESCA, * DESCC;
   float          * A, * C;
#endif
{
/*
*  Purpose
*  =======
*
*  PCHERK  performs one of the Hermitian rank k operations
*
*     sub( C ) := alpha*sub( A )*conjg( sub( A )' ) + beta*sub( C ),
*
*  or
*
*     sub( C ) := alpha*conjg( sub( A )' )*sub( A ) + beta*sub( C ),
*
*  where
*
*     sub( C ) denotes C(IC:IC+N-1,JC:JC+N-1), and,
*
*     sub( A ) denotes A(IA:IA+N-1,JA:JA+K-1)  if TRANS = 'N',
*                      A(IA:IA+K-1,JA:JA+N-1)  otherwise.
*
*  Alpha and beta are real scalars,  sub( C )  is  an  n by n  Hermitian
*  submatrix and sub( A ) is an n by k submatrix in the first case and a
*  k by n submatrix in the second case.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  UPLO    (global input) CHARACTER*1
*          On  entry,   UPLO  specifies  whether  the  local  pieces  of
*          the array  C  containing the  upper or lower triangular  part
*          of the Hermitian submatrix  sub( C )  are to be referenced as
*          follows:
*
*             UPLO = 'U' or 'u'   Only the local pieces corresponding to
*                                 the   upper  triangular  part  of  the
*                                 Hermitian submatrix sub( C ) are to be
*                                 referenced,
*
*             UPLO = 'L' or 'l'   Only the local pieces corresponding to
*                                 the   lower  triangular  part  of  the
*                                 Hermitian submatrix sub( C ) are to be
*                                 referenced.
*
*  TRANS   (global input) CHARACTER*1
*          On entry,  TRANS  specifies the  operation to be performed as
*          follows:
*
*             TRANS = 'N' or 'n'
*                  sub( C ) := alpha*sub( A )*conjg( sub( A )' ) +
*                              beta*sub( C ),
*
*             TRANS = 'C' or 'c'
*                  sub( C ) := alpha*conjg( sub( A )' )*sub( A ) +
*                              beta*sub( C ).
*
*  N       (global input) INTEGER
*          On entry,  N specifies the order of the  submatrix  sub( C ).
*          N must be at least zero.
*
*  K       (global input) INTEGER
*          On entry, with TRANS = 'N' or 'n',  K specifies the number of
*          columns  of  the submatrix  sub( A ), and with TRANS = 'C' or
*          'c',  K  specifies  the  number  of  rows  of  the  submatrix
*          sub( A ). K  must be at least zero.
*
*  ALPHA   (global input) REAL
*          On entry, ALPHA specifies the scalar alpha.   When  ALPHA  is
*          supplied  as  zero  then  the  local entries of  the array  A
*          corresponding to the entries of the submatrix  sub( A )  need
*          not be set on input.
*
*  A       (local input) COMPLEX array
*          On entry, A is an array of dimension (LLD_A, Ka), where Ka is
*          at least  Lc( 1, JA+K-1 ) when  TRANS = 'N' or 'n', and is at
*          least Lc( 1, JA+N-1 ) otherwise.  Before  entry,  this  array
*          contains the local entries of the matrix A.
*          Before entry with TRANS = 'N' or 'n', this array contains the
*          local entries corresponding to the entries of the n by k sub-
*          matrix sub( A ), otherwise the local entries corresponding to
*          the entries of the k by n submatrix sub( A ).
*
*  IA      (global input) INTEGER
*          On entry, IA  specifies A's global row index, which points to
*          the beginning of the submatrix sub( A ).
*
*  JA      (global input) INTEGER
*          On entry, JA  specifies A's global column index, which points
*          to the beginning of the submatrix sub( A ).
*
*  DESCA   (global and local input) INTEGER array
*          On entry, DESCA  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix A.
*
*  BETA    (global input) REAL
*          On entry,  BETA  specifies the scalar  beta.   When  BETA  is
*          supplied  as  zero  then  the  local entries of  the array  C
*          corresponding to the entries of the submatrix  sub( C )  need
*          not be set on input.
*
*  C       (local input/local output) COMPLEX array
*          On entry, C is an array of dimension (LLD_C, Kc), where Kc is
*          at least Lc( 1, JC+N-1 ).  Before  entry, this array contains
*          the local entries of the matrix C.
*          Before  entry  with  UPLO = 'U' or 'u', this  array  contains
*          the local entries corresponding to the upper triangular  part
*          of the  Hermitian  submatrix  sub( C ), and the local entries
*          corresponding to the  strictly lower triangular  of  sub( C )
*          are not  referenced.  On exit,  the upper triangular part  of
*          sub( C ) is overwritten by the  upper triangular part  of the
*          updated submatrix.
*          Before  entry  with  UPLO = 'L' or 'l', this  array  contains
*          the local entries corresponding to the lower triangular  part
*          of the  Hermitian  submatrix  sub( C ), and the local entries
*          corresponding to the  strictly upper triangular  of  sub( C )
*          are not  referenced.  On exit,  the lower triangular part  of
*          sub( C ) is overwritten by the  lower triangular part  of the
*          updated submatrix.
*          Note that the  imaginary parts  of the local entries  corres-
*          ponding to the  diagonal elements  of  sub( C )  need not  be
*          set,  they are assumed to be zero,  and on exit they are  set
*          to zero.
*
*  IC      (global input) INTEGER
*          On entry, IC  specifies C's global row index, which points to
*          the beginning of the submatrix sub( C ).
*
*  JC      (global input) INTEGER
*          On entry, JC  specifies C's global column index, which points
*          to the beginning of the submatrix sub( C ).
*
*  DESCC   (global and local input) INTEGER array
*          On entry, DESCC  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix C.
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           DirA, OpC, OpR, TopC, TopR, TranOp, UploC, ctop, ctopsave,
                  rtop, rtopsave;
   int            Ai, Aj, ChooseAC, Ci, Cj, ForceTop, ctxt, info, mycol,
                  myrow, nb, notran, npcol, nprow, upper;
   double         Aest, ACest, tmp1, tmp2, tmp3, tmp4;
   cmplx          Calph;
   PBTYP_T        * type;
/*
*  .. Local Arrays ..
*/
   int            Ad[DLEN_], Cd[DLEN_];
/* ..
*  .. Executable Statements ..
*
*/
   upper  = ( ( UploC  = Mupcase( F2C_CHAR( UPLO  )[0] ) ) ==  CUPPER );
   notran = ( ( TranOp = Mupcase( F2C_CHAR( TRANS )[0] ) ) == CNOTRAN );
   PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
   PB_CargFtoC( *IC, *JC, DESCC, &Ci, &Cj, Cd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 901 + CTXT_ ) : 0 ) ) )
   {
      if( ( !upper ) && ( UploC != CLOWER ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PCHERK", "Illegal UPLO = %c\n", UploC );
         info = -1;
      }
      else if( ( !notran ) && ( TranOp != CCOTRAN ) )
      {
         PB_Cwarn( ctxt, __LINE__, "PCHERK", "Illegal TRANS = %c\n", TranOp );
         info = -2;
      }
      if( notran )
         PB_Cchkmat( ctxt, "PCHERK", "A", *N, 3, *K, 4, Ai, Aj, Ad,  9,
                     &info );
      else
         PB_Cchkmat( ctxt, "PCHERK", "A", *K, 4, *N, 3, Ai, Aj, Ad,  9,
                     &info );
      PB_Cchkmat(    ctxt, "PCHERK", "C", *N, 3, *N, 3, Ci, Cj, Cd, 14,
                     &info );
   }
   if( info ) { PB_Cabort( ctxt, "PCHERK", info ); return; }
#endif
/*
*  Quick return if possible
*/
   if( ( *N == 0 ) ||
       ( ( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) ) &&
         ( BETA[REAL_PART] == ONE                      ) ) )
      return;
/*
*  Get type structure
*/
   type = PB_Cctypeset();
/*
*  And when alpha or K is zero
*/
   if( ( ALPHA[REAL_PART] == ZERO ) || ( *K == 0 ) )
   {
      if( BETA[REAL_PART] == ZERO )
      {
         PB_Cplapad( type, &UploC, NOCONJG, *N, *N, type->zero, type->zero,
                     ((char *) C), Ci, Cj, Cd );
      }
      else
      {
         PB_Cplascal( type, &UploC, CONJG,   *N, *N, ((char *) BETA),
                      ((char *) C), Ci, Cj, Cd );
      }
      return;
   }
/*
*  Start the operations
*/
#ifdef NO_ARGCHK
   Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
   Calph[REAL_PART] = ALPHA[REAL_PART];
   Calph[IMAG_PART] = ZERO;
/*
*  Algorithm selection is based on approximation of the communication volume
*  for distributed and aligned operands.
*
*  ACest: both operands sub( A ) and sub( C ) are communicated (K >> N)
*  Aest : only sub( A ) is communicated                        (N >> K)
*/
   if( notran )
   {
      tmp1  = DNROC( *N, Cd[MB_], nprow ); tmp3 = DNROC( *K, Ad[NB_], npcol );
      ACest = (double)(*N) *
        ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp3 ) +
          ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO :
            CBRATIO * tmp1 / TWO ) );
      tmp1  = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
                                           tmp4 = DNROC( *N, Ad[MB_], nprow );
      Aest  = (double)(*K) *
              ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp1 ) +
                ( nprow == 1 ? ZERO : tmp2 ) + MAX( tmp2, tmp4 ) );
   }
   else
   {
      tmp2  = DNROC( *N, Cd[NB_], npcol ); tmp4 = DNROC( *K, Ad[MB_], nprow );
      ACest = (double)(*N) *
        ( ( ( ( Ad[CSRC_] == -1 ) || ( npcol == 1 ) ) ? ZERO : tmp4 ) +
          ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO :
            CBRATIO * tmp2 / TWO ) );
      tmp1  = DNROC( *N, Cd[MB_], nprow ); tmp2 = DNROC( *N, Cd[NB_], npcol );
      tmp3  = DNROC( *N, Ad[NB_], npcol );
      Aest  = (double)(*K) *
              ( ( ( ( Ad[RSRC_] == -1 ) || ( nprow == 1 ) ) ? ZERO : tmp2 ) +
                ( npcol == 1 ? ZERO : tmp1 ) + MAX( tmp1, tmp3 ) );
   }
/*
*  Shift a little the cross-over point between both algorithms.
*/
   ChooseAC = ( ( 1.3 * ACest ) <= Aest );
/*
*  BLACS topologies are enforced iff N and K are strictly greater than the
*  logical block size returned by pilaenv_. Otherwise, it is assumed that the
*  routine calling this routine has already selected an adequate topology.
*/
   nb       = pilaenv_( &ctxt, C2F_CHAR( &type->type ) );
   ForceTop = ( ( *N > nb ) && ( *K > nb ) );
   if( ChooseAC )
   {
      if( notran )
      {
         OpC  = CBCAST;
         ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
         if( ForceTop )
         {
            OpR  = CCOMBINE;
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
            rtopsave = rtop;
            ctopsave = ctop;
            if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
            else        { TopR = CTOP_DRING; TopC = CTOP_IRING; }
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    &TopR );
/*
*  Remove the next line when the BLACS combine operations support ring
*  topologies
*/
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_DEFAULT );
         }
         DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
      }
      else
      {
         OpR  = CBCAST;
         rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
         if( ForceTop )
         {
            OpC  = CCOMBINE;
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
            rtopsave = rtop;
            ctopsave = ctop;
            if( upper ) { TopR = CTOP_IRING; TopC = CTOP_DRING; }
            else        { TopR = CTOP_DRING; TopC = CTOP_IRING; }
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    &TopR );
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, &TopC );
/*
*  Remove the next line when the BLACS combine operations support ring
*  topologies
*/
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_DEFAULT );
         }
         DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
      }
      PB_CpsyrkAC( type, &DirA, CONJG,   &UploC, ( notran ? NOTRAN : COTRAN ),
                   *N, *K, ((char *)Calph), ((char *)A), Ai, Aj, Ad,
                   ((char *)BETA), ((char *)C), Ci, Cj, Cd );
   }
   else
   {
      if( notran )
      {
         OpR  = CBCAST;
         rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
         if( ForceTop )
         {
            OpC  = CBCAST;
            ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
            rtopsave = rtop;
            ctopsave = ctop;
/*
*  No clear winner for the ring topologies, so that if a ring topology is
*  already selected, keep it.
*/
            if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
                ( rtop != CTOP_SRING ) )
               rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_SRING );
            if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
                ( ctop != CTOP_SRING ) )
               ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
         }
         DirA = ( rtop == CTOP_DRING ? CBACKWARD : CFORWARD );
      }
      else
      {
         OpC  = CBCAST;
         ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_GET );
         if( ForceTop )
         {
            OpR  = CBCAST;
            rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_GET );
            rtopsave = rtop;
            ctopsave = ctop;
/*
*  No clear winner for the ring topologies, so that if a ring topology is
*  already selected, keep it.
*/
            if( ( rtop != CTOP_DRING ) && ( rtop != CTOP_IRING ) &&
                ( rtop != CTOP_SRING ) )
               rtop = *PB_Ctop( &ctxt, &OpR, ROW,    TOP_SRING );
            if( ( ctop != CTOP_DRING ) && ( ctop != CTOP_IRING ) &&
                ( ctop != CTOP_SRING ) )
               ctop = *PB_Ctop( &ctxt, &OpC, COLUMN, TOP_SRING );
         }
         DirA = ( ctop == CTOP_DRING ? CBACKWARD : CFORWARD );
      }
      PB_CpsyrkA( type, &DirA, CONJG,   &UploC, ( notran ? NOTRAN : COTRAN ),
                  *N, *K, ((char *)Calph), ((char *)A), Ai, Aj, Ad,
                  ((char *)BETA), ((char *)C), Ci, Cj, Cd );
   }
/*
*  Restore the BLACS topologies when necessary.
*/
   if( ForceTop )
   {
      rtopsave = *PB_Ctop( &ctxt, &OpR, ROW,    &rtopsave );
      ctopsave = *PB_Ctop( &ctxt, &OpC, COLUMN, &ctopsave );
   }
/*
*  End of PCHERK
*/
}
 |