| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 
 | /* ---------------------------------------------------------------------
*
*  -- PBLAS routine (version 2.0) --
*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
*     and University of California, Berkeley.
*     April 1, 1998
*
*  ---------------------------------------------------------------------
*/
/*
*  Include files
*/
#include "pblas.h"
#include "PBpblas.h"
#include "PBtools.h"
#include "PBblacs.h"
#include "PBblas.h"
#ifdef __STDC__
void pdamax_( int * N, double * AMAX, int * INDX,
              double * X, int * IX, int * JX, int * DESCX, int * INCX )
#else
void pdamax_( N, AMAX, INDX, X, IX, JX, DESCX, INCX )
/*
*  .. Scalar Arguments ..
*/
   int            * INCX, * INDX, * IX, * JX, * N;
   double         * AMAX;
/*
*  .. Array Arguments ..
*/
   int            * DESCX;
   double         * X;
#endif
{
/*
*  Purpose
*  =======
*
*  PDAMAX  computes the global index of the maximum element in  absolute
*  value of a subvector sub( X ).  The global index is returned in  INDX
*  and the value of that element is returned in AMAX,
*
*  where
*
*     sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
*                      X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
*
*  Notes
*  =====
*
*  A description  vector  is associated with each 2D block-cyclicly dis-
*  tributed matrix.  This  vector  stores  the  information  required to
*  establish the  mapping  between a  matrix entry and its corresponding
*  process and memory location.
*
*  In  the  following  comments,   the character _  should  be  read  as
*  "of  the  distributed  matrix".  Let  A  be a generic term for any 2D
*  block cyclicly distributed matrix.  Its description vector is DESC_A:
*
*  NOTATION         STORED IN       EXPLANATION
*  ---------------- --------------- ------------------------------------
*  DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
*  CTXT_A  (global) DESCA[ CTXT_  ] The BLACS context handle, indicating
*                                   the NPROW x NPCOL BLACS process grid
*                                   A  is  distributed over. The context
*                                   itself  is  global,  but  the handle
*                                   (the integer value) may vary.
*  M_A     (global) DESCA[ M_     ] The  number of rows in the distribu-
*                                   ted matrix A, M_A >= 0.
*  N_A     (global) DESCA[ N_     ] The number of columns in the distri-
*                                   buted matrix A, N_A >= 0.
*  IMB_A   (global) DESCA[ IMB_   ] The number of rows of the upper left
*                                   block of the matrix A, IMB_A > 0.
*  INB_A   (global) DESCA[ INB_   ] The  number  of columns of the upper
*                                   left   block   of   the  matrix   A,
*                                   INB_A > 0.
*  MB_A    (global) DESCA[ MB_    ] The blocking factor used to  distri-
*                                   bute the last  M_A-IMB_A  rows of A,
*                                   MB_A > 0.
*  NB_A    (global) DESCA[ NB_    ] The blocking factor used to  distri-
*                                   bute the last  N_A-INB_A  columns of
*                                   A, NB_A > 0.
*  RSRC_A  (global) DESCA[ RSRC_  ] The process row over which the first
*                                   row of the matrix  A is distributed,
*                                   NPROW > RSRC_A >= 0.
*  CSRC_A  (global) DESCA[ CSRC_  ] The  process column  over  which the
*                                   first column of  A  is  distributed.
*                                   NPCOL > CSRC_A >= 0.
*  LLD_A   (local)  DESCA[ LLD_   ] The  leading dimension  of the local
*                                   array  storing  the  local blocks of
*                                   the distributed matrix A,
*                                   IF( Lc( 1, N_A ) > 0 )
*                                      LLD_A >= MAX( 1, Lr( 1, M_A ) )
*                                   ELSE
*                                      LLD_A >= 1.
*
*  Let K be the number of  rows of a matrix A starting at the global in-
*  dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
*  that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
*  receive if these K rows were distributed over NPROW processes.  If  K
*  is the number of columns of a matrix  A  starting at the global index
*  JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number  of co-
*  lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would  receive if
*  these K columns were distributed over NPCOL processes.
*
*  The values of Lr() and Lc() may be determined via a call to the func-
*  tion PB_Cnumroc:
*  Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
*  Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
*
*  Arguments
*  =========
*
*  N       (global input) INTEGER
*          On entry,  N  specifies the length of the subvector sub( X ).
*          N must be at least zero.
*
*  AMAX    (global output) DOUBLE PRECISION array
*          On exit,  AMAX  specifies the largest entry in absolute value
*          of the  subvector  sub( X )  only in its scope (See below for
*          further details).
*
*  INDX    (global output) INTEGER
*          On exit, INDX  specifies the global index of the maximum ele-
*          ment in absolute  value of the subvector sub( X ) only in its
*          scope (See below for further details).
*
*  X       (local input) DOUBLE PRECISION array
*          On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
*          is   at  least  MAX( 1, Lr( 1, IX ) )  when  INCX = M_X   and
*          MAX( 1, Lr( 1, IX+N-1 ) )  otherwise,  and,  Kx  is  at least
*          Lc( 1, JX+N-1 )  when  INCX = M_X  and Lc( 1, JX ) otherwise.
*          Before  entry,  this array  contains the local entries of the
*          matrix X.
*
*  IX      (global input) INTEGER
*          On entry, IX  specifies X's global row index, which points to
*          the beginning of the submatrix sub( X ).
*
*  JX      (global input) INTEGER
*          On entry, JX  specifies X's global column index, which points
*          to the beginning of the submatrix sub( X ).
*
*  DESCX   (global and local input) INTEGER array
*          On entry, DESCX  is an integer array of dimension DLEN_. This
*          is the array descriptor for the matrix X.
*
*  INCX    (global input) INTEGER
*          On entry,  INCX   specifies  the  global  increment  for  the
*          elements of  X.  Only two values of  INCX   are  supported in
*          this version, namely 1 and M_X. INCX  must not be zero.
*
*  Further Details
*  ===============
*
*  When  the  result  of  a vector-oriented PBLAS call is a scalar, this
*  scalar  is set only within the process scope which owns the vector(s)
*  being operated on. Let sub( X ) be a generic term for the input  vec-
*  tor(s). Then, the processes owning the correct the answer is determi-
*  ned as follows:  if  an  operation involves more than one vector, the
*  processes receiving the result will be the union of the following set
*  of processes for each vector:
*
*  If N = 1, M_X = 1 and INCX = 1,  then  one cannot determine if a pro-
*  cess  row  or  process column owns the vector operand, therefore only
*  the process owning sub( X ) receives the correct result;
*
*  If  INCX = M_X, then sub( X )  is a vector distributed over a process
*  row. Each process in this row receives the result;
*
*  If  INCX = 1, then  sub( X )  is  a vector distributed over a process
*  column. Each process in this column receives the result;
*
*  -- Written on April 1, 1998 by
*     Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
*
*  ---------------------------------------------------------------------
*/
/*
*  .. Local Scalars ..
*/
   char           cbtop, cctop, rbtop, rctop;
   int            Xcol, Xgindx, Xi, Xii, Ximb, Xinb, Xj, Xjj, Xlindx, Xld, Xmb,
                  Xnb, Xnp, Xnq, Xrow, Xsrc, ctxt, dist, dst, idumm, info, k,
                  maxpos, mycol, mydist, myrow, npcol, nprow, src;
/*
*  .. Local Arrays ..
*/
   int            Xd[DLEN_];
   double         work[4];
/* ..
*  .. Executable Statements ..
*
*/
   PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
#ifndef NO_ARGCHK
/*
*  Test the input parameters
*/
   Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
   if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
      PB_Cchkvec( ctxt, "PDAMAX", "X", *N, 1, Xi, Xj, Xd, *INCX, 7, &info );
   if( info ) { PB_Cabort( ctxt, "PDAMAX", info ); return; }
#endif
/*
*  Initialize INDX and AMAX
*/
   *INDX = 0; *AMAX = ZERO;
/*
*  Quick return if possible
*/
   if( *N == 0 ) return;
/*
*  Retrieve process grid information
*/
#ifdef NO_ARGCHK
   Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
#endif
/*
*  Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol
*/
   PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj,
                &Xrow, &Xcol );
/*
*  Handle degenerate case separately, sub( X )'s scope is just one process
*/
   if( ( *INCX == 1 ) && ( Xd[M_] == 1 ) && ( *N == 1 ) )
   {
/*
*  Make sure I own some data and compute INDX and AMAX
*/
      if( ( ( myrow == Xrow ) || ( Xrow < 0 ) ) &&
          ( ( mycol == Xcol ) || ( Xcol < 0 ) ) )
      {
         *INDX = *JX; *AMAX = X[Xii+Xjj*Xd[LLD_]];
      }
      return;
   }
   else if( *INCX == Xd[M_] )
   {
/*
*  sub( X ) resides in (a) process row(s)
*/
      if( ( myrow == Xrow ) || ( Xrow < 0 ) )
      {
         rctop = *PB_Ctop( &ctxt, COMBINE, ROW, TOP_GET );
         if( ( rctop == CTOP_DEFAULT ) || ( rctop == CTOP_TREE1 ) )
         {
/*
*  Inline the 1-tree combine for communication savings
*/
            Xinb = Xd[INB_ ]; Xnb = Xd[NB_ ]; Xsrc = Xd[CSRC_];
            Xnq = PB_Cnumroc( *N, Xj, Xinb, Xnb, mycol, Xsrc, npcol );
/*
*  Make sure I own some data and compute local INDX and AMAX
*/
            if( Xnq > 0 )
            {
               Xld = Xd[LLD_];
               Xlindx = Xjj - 1 +
                        idamax_( &Xnq, ((char*)(X+(Xii+Xjj*Xld))), &Xld );
               Mindxl2g( Xgindx, Xlindx, Xinb, Xnb, mycol, Xsrc, npcol );
               work[0] = X[Xii+Xlindx*Xld];
               work[1] = ((double)( Xgindx+1 ));
            }
            else
            {
               work[0] = ZERO;
               work[1] = ZERO;
            }
/*
*  Combine the local results using a 1-tree topology within process column 0
*  if npcol > 1 or Xcol >= 0, i.e sub( X ) is distributed.
*/
            if( ( npcol >= 2 ) && ( Xcol >= 0 ) )
            {
               mydist = mycol;
               k      = 1;
l_10:
               if( mydist & 1 )
               {
                  dist = k * ( mydist - 1 );
                  dst  = MPosMod( dist, npcol );
                  Cdgesd2d( ctxt, 2, 1, ((char*)work), 2, myrow, dst );
                  goto l_20;
               }
               else
               {
                  dist = mycol + k;
                  src  = MPosMod( dist, npcol );
                  if( mycol < src )
                  {
                     Cdgerv2d( ctxt, 2, 1, ((char*) &work[2]), 2, myrow,
                               src );
                     if( ABS( work[0] ) < ABS( work[2] ) )
                     { work[0] = work[2]; work[1] = work[3]; }
                  }
                  mydist >>= 1;
               }
               k <<= 1;
               if( k < npcol ) goto l_10;
l_20:
/*
*  Process column 0 broadcasts the combined values of INDX and AMAX within
*  their process row.
*/
               rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
               if( mycol == 0 )
               {
                  Cdgebs2d( ctxt, ROW, &rbtop, 2, 1, ((char*)work), 2 );
               }
               else
               {
                  Cdgebr2d( ctxt, ROW, &rbtop, 2, 1, ((char*)work), 2,
                            myrow, 0 );
               }
            }
/*
*  Set INDX and AMAX to the replicated answers contained in work. If AMAX is
*  zero, then select a coherent INDX.
*/
            *AMAX = work[0];
            *INDX = ( ( *AMAX == ZERO ) ? ( *JX ) : ( (int)(work[1]) ) );
         }
         else
         {
/*
*  Otherwise use the current topology settings to combine the results
*/
            Xinb = Xd[INB_ ]; Xnb = Xd[NB_ ]; Xsrc = Xd[CSRC_];
            Xnq = PB_Cnumroc( *N, Xj, Xinb, Xnb, mycol, Xsrc, npcol );
/*
*  Make sure I own some data and compute local INDX and AMAX
*/
            if( Xnq > 0 )
            {
/*
*  Compute the local maximum and its corresponding local index
*/
               Xld = Xd[LLD_];
               Xlindx = Xjj - 1 +
                        idamax_( &Xnq, ((char*)(X+(Xii+Xjj*Xld))), &Xld );
               *AMAX = X[Xii+Xlindx*Xld];
            }
            else
            {
               *AMAX = ZERO;
            }
            if( Xcol >= 0 )
            {
/*
*  Combine leave on all the local maximum if Xcol >= 0, i.e sub( X ) is
*  distributed
*/
               Cdgamx2d( ctxt, ROW, &rctop, 1, 1, ((char*)AMAX), 1,
                         &idumm, &maxpos, 1, -1, mycol );
/*
*  Broadcast the corresponding global index
*/
               if( *AMAX != ZERO )
               {
                  rbtop = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
                  if( mycol == maxpos )
                  {
                     Mindxl2g( Xgindx, Xlindx, Xinb, Xnb, mycol, Xsrc, npcol );
                     *INDX = Xgindx + 1;
                     Cigebs2d( ctxt, ROW, &rbtop, 1, 1, ((char*)INDX), 1 );
                  }
                  else
                  {
                     Cigebr2d( ctxt, ROW, &rbtop, 1, 1, ((char*)INDX), 1,
                               myrow, maxpos );
                  }
               }
               else
               {
/*
*  If AMAX is zero, then select a coherent INDX.
*/
                  *INDX = *JX;
               }
            }
            else
            {
/*
*  sub( X ) is not distributed. If AMAX is zero, then select a coherent INDX.
*/
               *INDX = ( ( *AMAX == ZERO ) ? ( *JX ) : Xlindx + 1 );
            }
         }
      }
      return;
   }
   else
   {
/*
*  sub( X ) resides in (a) process column(s)
*/
      if( ( mycol == Xcol ) || ( Xcol < 0 ) )
      {
         cctop = *PB_Ctop( &ctxt, COMBINE, COLUMN, TOP_GET );
         if( ( cctop == CTOP_DEFAULT ) || ( cctop == CTOP_TREE1 ) )
         {
/*
*  Inline the 1-tree combine for communication savings
*/
            Ximb = Xd[IMB_ ]; Xmb = Xd[MB_ ]; Xsrc = Xd[RSRC_];
            Xnp = PB_Cnumroc( *N, Xi, Ximb, Xmb, myrow, Xsrc, nprow );
/*
*  Make sure I own some data and compute local INDX and AMAX
*/
            if( Xnp > 0 )
            {
               Xld     = Xd[LLD_];
               Xlindx  = Xii - 1 +
                         idamax_( &Xnp, ((char*)(X+(Xii+Xjj*Xld))), INCX );
               Mindxl2g( Xgindx, Xlindx, Ximb, Xmb, myrow, Xsrc, nprow );
               work[0] = X[Xlindx+Xjj*Xld];
               work[1] = ((double)( Xgindx+1 ));
            }
            else
            {
               work[0] = ZERO;
               work[1] = ZERO;
            }
/*
*  Combine the local results using a 1-tree topology within process row 0
*  if nprow > 1 or Xrow >= 0, i.e sub( X ) is distributed.
*/
            if( ( nprow >= 2 ) && ( Xrow >= 0 ) )
            {
               mydist = myrow;
               k      = 1;
l_30:
               if( mydist & 1 )
               {
                  dist = k * ( mydist - 1 );
                  dst  = MPosMod( dist, nprow );
                  Cdgesd2d( ctxt, 2, 1, ((char*)work), 2, dst, mycol );
                  goto l_40;
               }
               else
               {
                  dist = myrow + k;
                  src  = MPosMod( dist, nprow );
                  if( myrow < src )
                  {
                     Cdgerv2d( ctxt, 2, 1, ((char*) &work[2]), 2,
                               src, mycol );
                     if( ABS( work[0] ) < ABS( work[2] ) )
                     { work[0] = work[2]; work[1] = work[3]; }
                  }
                  mydist >>= 1;
               }
               k <<= 1;
               if( k < nprow ) goto l_30;
l_40:
/*
*  Process row 0 broadcasts the combined values of INDX and AMAX within their
*  process column.
*/
               cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
               if( myrow == 0 )
               {
                  Cdgebs2d( ctxt, COLUMN, &cbtop, 2, 1, ((char*)work), 2 );
               }
               else
               {
                  Cdgebr2d( ctxt, COLUMN, &cbtop, 2, 1, ((char*)work), 2,
                            0, mycol );
               }
            }
/*
*  Set INDX and AMAX to the replicated answers contained in work. If AMAX is
*  zero, then select a coherent INDX.
*/
            *AMAX = work[0];
            *INDX = ( ( *AMAX == ZERO ) ? ( *IX ) : ( (int)(work[1]) ) );
         }
         else
         {
/*
*  Otherwise use the current topology settings to combine the results
*/
            Ximb = Xd[IMB_ ]; Xmb = Xd[MB_ ]; Xsrc = Xd[RSRC_];
            Xnp = PB_Cnumroc( *N, Xi, Ximb, Xmb, myrow, Xsrc, nprow );
/*
*  Make sure I own some data and compute local INDX and AMAX
*/
            if( Xnp > 0 )
            {
/*
*  Compute the local maximum and its corresponding local index
*/
               Xld = Xd[LLD_];
               Xlindx = Xii - 1 +
                        idamax_( &Xnp, ((char*)(X+(Xii+Xjj*Xld))), INCX );
               *AMAX = X[Xlindx+Xjj*Xld];
            }
            else
            {
               *AMAX = ZERO;
            }
            if( Xrow >= 0 )
            {
/*
*  Combine leave on all the local maximum if Xrow >= 0, i.e sub( X ) is
*  distributed.
*/
               Cdgamx2d( ctxt, COLUMN, &cctop, 1, 1, ((char*)AMAX), 1,
                         &maxpos, &idumm, 1, -1, mycol );
/*
*  Broadcast the corresponding global index
*/
               if( *AMAX != ZERO )
               {
                  cbtop = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
                  if( myrow == maxpos )
                  {
                     Mindxl2g( Xgindx, Xlindx, Ximb, Xmb, myrow, Xsrc, nprow );
                     *INDX = Xgindx + 1;
                     Cigebs2d( ctxt, COLUMN, &cbtop, 1, 1, ((char*)INDX), 1 );
                  }
                  else
                  {
                     Cigebr2d( ctxt, COLUMN, &cbtop, 1, 1, ((char*)INDX), 1,
                               maxpos, mycol );
                  }
               }
               else
               {
/*
*  If AMAX is zero, then select a coherent INDX.
*/
                  *INDX = *IX;
               }
            }
            else
            {
/*
*  sub( X ) is not distributed. If AMAX is zero, then select a coherent INDX.
*/
               *INDX = ( ( *AMAX == ZERO ) ? ( *IX ) : Xlindx + 1 );
            }
         }
      }
      return;
   }
/*
*  End of PDAMAX
*/
}
 |